/* * control_Velocidad.cpp * * Academic License - for use in teaching, academic research, and meeting * course requirements at degree granting institutions only. Not for * government, commercial, or other organizational use. * * Code generation for model "control_Velocidad". * * Model version : 1.10 * Simulink Coder version : 24.2 (R2024b) 21-Jun-2024 * C++ source code generated on : Mon Jun 9 17:59:10 2025 * * Target selection: speedgoat.tlc * Note: GRT includes extra infrastructure and instrumentation for prototyping * Embedded hardware selection: Intel->x86-64 (Linux 64) * Code generation objectives: Unspecified * Validation result: Not run */ #include "control_Velocidad.h" #include "control_Velocidad_cal.h" #include "rte_control_Velocidad_parameters.h" #include #include "control_Velocidad_private.h" #include "rtwtypes.h" #include "zero_crossing_types.h" #include extern "C" { #include "rt_nonfinite.h" } #include /* Block signals (default storage) */ B_control_Velocidad_T control_Velocidad_B; /* Block states (default storage) */ DW_control_Velocidad_T control_Velocidad_DW; /* Previous zero-crossings (trigger) states */ PrevZCX_control_Velocidad_T control_Velocidad_PrevZCX; /* Real-time model */ RT_MODEL_control_Velocidad_T control_Velocidad_M_ = RT_MODEL_control_Velocidad_T (); RT_MODEL_control_Velocidad_T *const control_Velocidad_M = &control_Velocidad_M_; real_T look1_pbinlxpw(real_T u0, const real_T bp0[], const real_T table[], uint32_T prevIndex[], uint32_T maxIndex) { real_T frac; real_T yL_0d0; uint32_T bpIdx; /* Column-major Lookup 1-D Search method: 'binary' Use previous index: 'on' Interpolation method: 'Linear point-slope' Extrapolation method: 'Linear' Use last breakpoint for index at or above upper limit: 'off' Remove protection against out-of-range input in generated code: 'off' */ /* Prelookup - Index and Fraction Index Search method: 'binary' Extrapolation method: 'Linear' Use previous index: 'on' Use last breakpoint for index at or above upper limit: 'off' Remove protection against out-of-range input in generated code: 'off' */ if (u0 <= bp0[0U]) { bpIdx = 0U; frac = (u0 - bp0[0U]) / (bp0[1U] - bp0[0U]); } else if (u0 < bp0[maxIndex]) { uint32_T found; uint32_T iLeft; uint32_T iRght; /* Binary Search using Previous Index */ bpIdx = prevIndex[0U]; iLeft = 0U; iRght = maxIndex; found = 0U; while (found == 0U) { if (u0 < bp0[bpIdx]) { iRght = bpIdx - 1U; bpIdx = ((bpIdx + iLeft) - 1U) >> 1U; } else if (u0 < bp0[bpIdx + 1U]) { found = 1U; } else { iLeft = bpIdx + 1U; bpIdx = ((bpIdx + iRght) + 1U) >> 1U; } } frac = (u0 - bp0[bpIdx]) / (bp0[bpIdx + 1U] - bp0[bpIdx]); } else { bpIdx = maxIndex - 1U; frac = (u0 - bp0[maxIndex - 1U]) / (bp0[maxIndex] - bp0[maxIndex - 1U]); } prevIndex[0U] = bpIdx; /* Column-major Interpolation 1-D Interpolation method: 'Linear point-slope' Use last breakpoint for index at or above upper limit: 'off' Overflow mode: 'portable wrapping' */ yL_0d0 = table[bpIdx]; return (table[bpIdx + 1U] - yL_0d0) * frac + yL_0d0; } real_T rt_remd_snf(real_T u0, real_T u1) { real_T y; if (rtIsNaN(u0) || rtIsNaN(u1) || rtIsInf(u0)) { y = (rtNaN); } else if (rtIsInf(u1)) { y = u0; } else { if (u1 < 0.0) { y = std::ceil(u1); } else { y = std::floor(u1); } if ((u1 != 0.0) && (u1 != y)) { real_T q; q = std::abs(u0 / u1); if (!(std::abs(q - std::floor(q + 0.5)) > DBL_EPSILON * q)) { y = 0.0 * u0; } else { y = std::fmod(u0, u1); } } else { y = std::fmod(u0, u1); } } return y; } /* Model step function for TID0 */ void control_Velocidad_step0(void) /* Sample time: [0.0s, 0.0s] */ { real_T u0; ZCSigState SampleandHold1_Trig_ZCE_tmp; boolean_T zcEvent; /* Reset subsysRan breadcrumbs */ srClearBC(control_Velocidad_DW.TriggeredSubsystem_SubsysRanBC); /* Reset subsysRan breadcrumbs */ srClearBC(control_Velocidad_DW.NEGATIVEEdge_SubsysRanBC); /* Reset subsysRan breadcrumbs */ srClearBC(control_Velocidad_DW.POSITIVEEdge_SubsysRanBC); /* Reset subsysRan breadcrumbs */ srClearBC(control_Velocidad_DW.SampleandHold1_SubsysRanBC); /* Gain: '/CTE_amplitud' incorporates: * Constant: '/Constant1' */ control_Velocidad_B.CTE_amplitud = *get_cte_amplitud() * control_Velocidad_cal->Constant1_Value; /* DiscreteIntegrator: '/Discrete-Time Integrator' */ control_Velocidad_B.DiscreteTimeIntegrator = control_Velocidad_DW.DiscreteTimeIntegrator_DSTATE; /* Trigonometry: '/Trigonometric Function' */ control_Velocidad_B.TrigonometricFunction = std::sin (control_Velocidad_B.DiscreteTimeIntegrator); /* Sum: '/Sum' incorporates: * Constant: '/Constant1' */ control_Velocidad_B.Sum = control_Velocidad_B.DiscreteTimeIntegrator + control_Velocidad_cal->Constant1_Value_l; /* Trigonometry: '/Trigonometric Function1' */ control_Velocidad_B.TrigonometricFunction1 = std::sin(control_Velocidad_B.Sum); /* Sum: '/Sum1' incorporates: * Constant: '/Constant2' */ control_Velocidad_B.Sum1 = control_Velocidad_B.DiscreteTimeIntegrator + control_Velocidad_cal->Constant2_Value; /* Trigonometry: '/Trigonometric Function2' */ control_Velocidad_B.TrigonometricFunction2 = std::sin(control_Velocidad_B.Sum1); /* Product: '/Product' */ control_Velocidad_B.Product[0] = control_Velocidad_B.CTE_amplitud * control_Velocidad_B.TrigonometricFunction; control_Velocidad_B.Product[1] = control_Velocidad_B.CTE_amplitud * control_Velocidad_B.TrigonometricFunction1; control_Velocidad_B.Product[2] = control_Velocidad_B.CTE_amplitud * control_Velocidad_B.TrigonometricFunction2; /* Saturate: '/Saturation' */ u0 = control_Velocidad_B.Product[0]; if (u0 > control_Velocidad_cal->Saturation_UpperSat) { u0 = control_Velocidad_cal->Saturation_UpperSat; } else if (u0 < control_Velocidad_cal->Saturation_LowerSat) { u0 = control_Velocidad_cal->Saturation_LowerSat; } /* Saturate: '/Saturation' */ control_Velocidad_B.Saturation[0] = u0; /* Saturate: '/Saturation' */ u0 = control_Velocidad_B.Product[1]; if (u0 > control_Velocidad_cal->Saturation_UpperSat) { u0 = control_Velocidad_cal->Saturation_UpperSat; } else if (u0 < control_Velocidad_cal->Saturation_LowerSat) { u0 = control_Velocidad_cal->Saturation_LowerSat; } /* Saturate: '/Saturation' */ control_Velocidad_B.Saturation[1] = u0; /* Saturate: '/Saturation' */ u0 = control_Velocidad_B.Product[2]; if (u0 > control_Velocidad_cal->Saturation_UpperSat) { u0 = control_Velocidad_cal->Saturation_UpperSat; } else if (u0 < control_Velocidad_cal->Saturation_LowerSat) { u0 = control_Velocidad_cal->Saturation_LowerSat; } /* Saturate: '/Saturation' */ control_Velocidad_B.Saturation[2] = u0; /* DigitalClock: '/Digital Clock' */ control_Velocidad_B.DigitalClock = control_Velocidad_M->Timing.t[1]; /* Sum: '/Add1' incorporates: * Constant: '/Constant3' */ control_Velocidad_B.Add1 = control_Velocidad_B.DigitalClock + control_Velocidad_cal->Constant3_Value; /* Math: '/Math Function' incorporates: * Constant: '/Constant1' */ control_Velocidad_B.MathFunction = rt_remd_snf(control_Velocidad_B.Add1, control_Velocidad_cal->Constant1_Value_l0); /* Gain: '/1\ib1' */ control_Velocidad_B.uib1 = control_Velocidad_cal->uib1_Gain * control_Velocidad_B.MathFunction; /* Lookup_n-D: '/1-D Lookup Table' incorporates: * Gain: '/1\ib1' */ control_Velocidad_B.uDLookupTable = look1_pbinlxpw(control_Velocidad_B.uib1, control_Velocidad_cal->uDLookupTable_bp01Data, control_Velocidad_cal->uDLookupTable_tableData, &control_Velocidad_DW.m_bpIndex, 2U); /* Sum: '/Add3' incorporates: * Constant: '/Constant2' */ control_Velocidad_B.Add3 = control_Velocidad_B.uDLookupTable - control_Velocidad_cal->Constant2_Value_i; /* Sum: '/Add3' incorporates: * Constant: '/Constant10' */ control_Velocidad_B.Add3_b = control_Velocidad_cal->PWMGenerator2Level_MinMax [1] - control_Velocidad_cal->PWMGenerator2Level_MinMax[0]; /* Gain: '/Gain1' */ control_Velocidad_B.Gain1 = control_Velocidad_cal->Gain1_Gain * control_Velocidad_B.Add3_b; /* Product: '/MUL1' */ control_Velocidad_B.MUL1 = control_Velocidad_B.Add3 * control_Velocidad_B.Gain1; /* Sum: '/Add4' incorporates: * Constant: '/Constant10' */ control_Velocidad_B.Add4 = (control_Velocidad_cal->PWMGenerator2Level_MinMax[0] + control_Velocidad_B.MUL1) + control_Velocidad_B.Gain1; /* RelationalOperator: '/Relational Operator2' */ zcEvent = (control_Velocidad_B.Saturation[0] >= control_Velocidad_B.Add4); control_Velocidad_B.RelationalOperator2[0] = zcEvent; /* Logic: '/Logical Operator4' */ control_Velocidad_B.LogicalOperator4[0] = !zcEvent; /* RelationalOperator: '/Relational Operator2' */ zcEvent = (control_Velocidad_B.Saturation[1] >= control_Velocidad_B.Add4); control_Velocidad_B.RelationalOperator2[1] = zcEvent; /* Logic: '/Logical Operator4' */ control_Velocidad_B.LogicalOperator4[1] = !zcEvent; /* RelationalOperator: '/Relational Operator2' */ zcEvent = (control_Velocidad_B.Saturation[2] >= control_Velocidad_B.Add4); control_Velocidad_B.RelationalOperator2[2] = zcEvent; /* Logic: '/Logical Operator4' */ control_Velocidad_B.LogicalOperator4[2] = !zcEvent; /* DataTypeConversion: '/Data Type Conversion' */ control_Velocidad_B.DataTypeConversion[0] = control_Velocidad_B.RelationalOperator2[0]; control_Velocidad_B.DataTypeConversion[1] = control_Velocidad_B.LogicalOperator4[0]; control_Velocidad_B.DataTypeConversion[2] = control_Velocidad_B.RelationalOperator2[1]; control_Velocidad_B.DataTypeConversion[3] = control_Velocidad_B.LogicalOperator4[1]; control_Velocidad_B.DataTypeConversion[4] = control_Velocidad_B.RelationalOperator2[2]; control_Velocidad_B.DataTypeConversion[5] = control_Velocidad_B.LogicalOperator4[2]; /* S-Function (sg_fpga_do_sf_a2): '/Digital output' */ /* Level2 S-Function Block: '/Digital output' (sg_fpga_do_sf_a2) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[0]; sfcnOutputs(rts,0); } /* Gain: '/Gain' incorporates: * Constant: '/Constant1' */ control_Velocidad_B.Gain = control_Velocidad_cal->Gain_Gain * control_Velocidad_cal->Constant1_Value; /* Delay: '/Delay1' */ control_Velocidad_B.Delay1 = control_Velocidad_DW.Delay1_DSTATE; /* S-Function (sg_fpga_di_sf_a2): '/Digital input' */ /* Level2 S-Function Block: '/Digital input' (sg_fpga_di_sf_a2) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[1]; sfcnOutputs(rts,0); } /* DataTypeConversion: '/Cast To Boolean' */ control_Velocidad_B.CastToBoolean = (control_Velocidad_B.Digitalinput_o1 != 0.0); /* DataTypeConversion: '/Data Type Conversion2' */ control_Velocidad_B.DataTypeConversion2 = control_Velocidad_B.CastToBoolean; /* Memory: '/Memory' */ control_Velocidad_B.Memory = control_Velocidad_DW.Memory_PreviousInput; /* MultiPortSwitch: '/Multiport Switch' incorporates: * Constant: '/Constant1' */ switch (static_cast(control_Velocidad_cal->EdgeDetector_model)) { case 1: /* MultiPortSwitch: '/Multiport Switch' incorporates: * Constant: '/pos. edge' */ control_Velocidad_B.MultiportSwitch[0] = control_Velocidad_cal->posedge_Value[0]; control_Velocidad_B.MultiportSwitch[1] = control_Velocidad_cal->posedge_Value[1]; break; case 2: /* MultiPortSwitch: '/Multiport Switch' incorporates: * Constant: '/neg. edge' */ control_Velocidad_B.MultiportSwitch[0] = control_Velocidad_cal->negedge_Value[0]; control_Velocidad_B.MultiportSwitch[1] = control_Velocidad_cal->negedge_Value[1]; break; default: /* MultiPortSwitch: '/Multiport Switch' incorporates: * Constant: '/either edge' */ control_Velocidad_B.MultiportSwitch[0] = control_Velocidad_cal->eitheredge_Value[0]; control_Velocidad_B.MultiportSwitch[1] = control_Velocidad_cal->eitheredge_Value[1]; break; } /* End of MultiPortSwitch: '/Multiport Switch' */ /* Outputs for Enabled SubSystem: '/POSITIVE Edge' incorporates: * EnablePort: '/Enable' */ if (control_Velocidad_B.MultiportSwitch[0] > 0.0) { if (!control_Velocidad_DW.POSITIVEEdge_MODE) { control_Velocidad_DW.POSITIVEEdge_MODE = true; } /* RelationalOperator: '/Relational Operator1' */ control_Velocidad_B.RelationalOperator1 = (static_cast (control_Velocidad_B.Memory) < static_cast (control_Velocidad_B.DataTypeConversion2)); srUpdateBC(control_Velocidad_DW.POSITIVEEdge_SubsysRanBC); } else if (control_Velocidad_DW.POSITIVEEdge_MODE) { control_Velocidad_DW.POSITIVEEdge_MODE = false; } /* End of Outputs for SubSystem: '/POSITIVE Edge' */ /* Outputs for Enabled SubSystem: '/NEGATIVE Edge' incorporates: * EnablePort: '/Enable' */ if (control_Velocidad_B.MultiportSwitch[1] > 0.0) { if (!control_Velocidad_DW.NEGATIVEEdge_MODE) { control_Velocidad_DW.NEGATIVEEdge_MODE = true; } /* RelationalOperator: '/Relational Operator1' */ control_Velocidad_B.RelationalOperator1_e = (static_cast (control_Velocidad_B.Memory) > static_cast (control_Velocidad_B.DataTypeConversion2)); srUpdateBC(control_Velocidad_DW.NEGATIVEEdge_SubsysRanBC); } else if (control_Velocidad_DW.NEGATIVEEdge_MODE) { control_Velocidad_DW.NEGATIVEEdge_MODE = false; } /* End of Outputs for SubSystem: '/NEGATIVE Edge' */ /* Logic: '/Logical Operator1' */ control_Velocidad_B.LogicalOperator1 = (control_Velocidad_B.RelationalOperator1 || control_Velocidad_B.RelationalOperator1_e); /* Gain: '/CTE Encoder' */ control_Velocidad_B.CTEEncoder = control_Velocidad_B.LogicalOperator1 ? *get_cte_encoder() : 0UL; /* DataTypeConversion: '/Cast To Boolean1' */ control_Velocidad_B.CastToBoolean1 = (control_Velocidad_B.Digitalinput_o2 != 0.0); /* Clock: '/Clock' incorporates: * Clock: '/Clock' */ u0 = control_Velocidad_M->Timing.t[0]; /* Clock: '/Clock' */ control_Velocidad_B.Clock = u0; /* Outputs for Triggered SubSystem: '/Sample and Hold1' incorporates: * TriggerPort: '/Trigger' */ zcEvent = (control_Velocidad_B.LogicalOperator1 && (control_Velocidad_PrevZCX.SampleandHold1_Trig_ZCE != POS_ZCSIG)); if (zcEvent) { /* SignalConversion generated from: '/In' */ control_Velocidad_B.In = control_Velocidad_B.Clock; control_Velocidad_DW.SampleandHold1_SubsysRanBC = 4; } SampleandHold1_Trig_ZCE_tmp = control_Velocidad_B.LogicalOperator1; control_Velocidad_PrevZCX.SampleandHold1_Trig_ZCE = SampleandHold1_Trig_ZCE_tmp; /* End of Outputs for SubSystem: '/Sample and Hold1' */ /* UnitDelay: '/UD' */ control_Velocidad_B.Uk1 = control_Velocidad_DW.UD_DSTATE; /* Sum: '/Diff' */ control_Velocidad_B.Diff = control_Velocidad_B.In - control_Velocidad_B.Uk1; /* Delay: '/Delay' */ control_Velocidad_B.Delay = control_Velocidad_DW.Delay_DSTATE; /* Switch: '/Switch' */ if (control_Velocidad_B.Diff > *get_limite_direccion()) { /* Logic: '/Logical Operator' */ control_Velocidad_B.LogicalOperator = (control_Velocidad_B.LogicalOperator1 && control_Velocidad_B.CastToBoolean1); /* Switch: '/Switch1' */ if (control_Velocidad_B.LogicalOperator) { /* Switch: '/Switch1' incorporates: * Constant: '/Constant1' */ control_Velocidad_B.Switch1 = control_Velocidad_cal->Constant1_Value_n; } else { /* Switch: '/Switch1' incorporates: * Constant: '/Constant2' */ control_Velocidad_B.Switch1 = control_Velocidad_cal->Constant2_Value_b; } /* End of Switch: '/Switch1' */ /* Switch: '/Switch' */ control_Velocidad_B.Switch = control_Velocidad_B.Switch1; } else { /* Switch: '/Switch' */ control_Velocidad_B.Switch = control_Velocidad_B.Delay; } /* End of Switch: '/Switch' */ /* Product: '/Product' incorporates: * Gain: '/CTE Encoder' */ control_Velocidad_B.Product_o = static_cast (control_Velocidad_B.CTEEncoder) * 8.4703294725430034E-22 * control_Velocidad_B.Switch; /* Sum: '/Add' */ control_Velocidad_B.Add = control_Velocidad_B.Delay1 + control_Velocidad_B.Product_o; /* Clock: '/Clock' */ control_Velocidad_B.Clock_e = u0; /* Outputs for Triggered SubSystem: '/Triggered Subsystem' incorporates: * TriggerPort: '/Trigger' */ zcEvent = (control_Velocidad_B.LogicalOperator1 && (control_Velocidad_PrevZCX.TriggeredSubsystem_Trig_ZCE != POS_ZCSIG)); if (zcEvent) { /* SignalConversion generated from: '/In1' */ control_Velocidad_B.In1 = control_Velocidad_B.Clock_e; control_Velocidad_DW.TriggeredSubsystem_SubsysRanBC = 4; } control_Velocidad_PrevZCX.TriggeredSubsystem_Trig_ZCE = SampleandHold1_Trig_ZCE_tmp; /* End of Outputs for SubSystem: '/Triggered Subsystem' */ /* Sum: '/Sum' incorporates: * Constant: '/Constant' */ control_Velocidad_B.Sum_g = control_Velocidad_B.In1 + control_Velocidad_cal->Constant_Value; /* RelationalOperator: '/Relational Operator' */ control_Velocidad_B.RelationalOperator = (control_Velocidad_B.Sum_g > control_Velocidad_B.Clock_e); /* user code (Output function Trailer for TID0) */ { } /* Update for DiscreteIntegrator: '/Discrete-Time Integrator' */ control_Velocidad_DW.DiscreteTimeIntegrator_DSTATE += control_Velocidad_cal->DiscreteTimeIntegrator_gainval * control_Velocidad_B.Gain; /* Update for Delay: '/Delay1' */ control_Velocidad_DW.Delay1_DSTATE = control_Velocidad_B.Add; /* Update for Memory: '/Memory' */ control_Velocidad_DW.Memory_PreviousInput = control_Velocidad_B.DataTypeConversion2; /* Update for UnitDelay: '/UD' */ control_Velocidad_DW.UD_DSTATE = control_Velocidad_B.In; /* Update for Delay: '/Delay' */ control_Velocidad_DW.Delay_DSTATE = control_Velocidad_B.Switch; /* Update absolute time */ /* The "clockTick0" counts the number of times the code of this task has * been executed. The absolute time is the multiplication of "clockTick0" * and "Timing.stepSize0". Size of "clockTick0" ensures timer will not * overflow during the application lifespan selected. * Timer of this task consists of two 32 bit unsigned integers. * The two integers represent the low bits Timing.clockTick0 and the high bits * Timing.clockTickH0. When the low bit overflows to 0, the high bits increment. */ if (!(++control_Velocidad_M->Timing.clockTick0)) { ++control_Velocidad_M->Timing.clockTickH0; } control_Velocidad_M->Timing.t[0] = control_Velocidad_M->Timing.clockTick0 * control_Velocidad_M->Timing.stepSize0 + control_Velocidad_M->Timing.clockTickH0 * control_Velocidad_M->Timing.stepSize0 * 4294967296.0; /* Update absolute time */ /* The "clockTick1" counts the number of times the code of this task has * been executed. The absolute time is the multiplication of "clockTick1" * and "Timing.stepSize1". Size of "clockTick1" ensures timer will not * overflow during the application lifespan selected. * Timer of this task consists of two 32 bit unsigned integers. * The two integers represent the low bits Timing.clockTick1 and the high bits * Timing.clockTickH1. When the low bit overflows to 0, the high bits increment. */ if (!(++control_Velocidad_M->Timing.clockTick1)) { ++control_Velocidad_M->Timing.clockTickH1; } control_Velocidad_M->Timing.t[1] = control_Velocidad_M->Timing.clockTick1 * control_Velocidad_M->Timing.stepSize1 + control_Velocidad_M->Timing.clockTickH1 * control_Velocidad_M->Timing.stepSize1 * 4294967296.0; } /* Model step function for TID2 */ void control_Velocidad_step2(void) /* Sample time: [0.001s, 0.0s] */ { /* S-Function (sg_fpga_IO397_ad): '/IO397 Analog Input' */ /* Level2 S-Function Block: '/IO397 Analog Input' (sg_fpga_IO397_ad) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[2]; sfcnOutputs(rts,2); } /* Gain: '/Gain' */ control_Velocidad_B.Gain_n = control_Velocidad_cal->Gain_Gain_j * control_Velocidad_B.IO397AnalogInput_o1; /* Gain: '/Gain1' */ control_Velocidad_B.Gain1_j = control_Velocidad_cal->Gain1_Gain_j * control_Velocidad_B.IO397AnalogInput_o2; /* Gain: '/Gain2' */ control_Velocidad_B.Gain2 = control_Velocidad_cal->Gain2_Gain * control_Velocidad_B.IO397AnalogInput_o3; /* Update absolute time */ /* The "clockTick2" counts the number of times the code of this task has * been executed. The absolute time is the multiplication of "clockTick2" * and "Timing.stepSize2". Size of "clockTick2" ensures timer will not * overflow during the application lifespan selected. * Timer of this task consists of two 32 bit unsigned integers. * The two integers represent the low bits Timing.clockTick2 and the high bits * Timing.clockTickH2. When the low bit overflows to 0, the high bits increment. */ if (!(++control_Velocidad_M->Timing.clockTick2)) { ++control_Velocidad_M->Timing.clockTickH2; } control_Velocidad_M->Timing.t[2] = control_Velocidad_M->Timing.clockTick2 * control_Velocidad_M->Timing.stepSize2 + control_Velocidad_M->Timing.clockTickH2 * control_Velocidad_M->Timing.stepSize2 * 4294967296.0; } /* Model initialize function */ void control_Velocidad_initialize(void) { /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* Set task counter limit used by the static main program */ (control_Velocidad_M)->Timing.TaskCounters.cLimit[0] = 1; (control_Velocidad_M)->Timing.TaskCounters.cLimit[1] = 1; (control_Velocidad_M)->Timing.TaskCounters.cLimit[2] = 26; { /* Setup solver object */ rtsiSetSimTimeStepPtr(&control_Velocidad_M->solverInfo, &control_Velocidad_M->Timing.simTimeStep); rtsiSetTPtr(&control_Velocidad_M->solverInfo, &rtmGetTPtr (control_Velocidad_M)); rtsiSetStepSizePtr(&control_Velocidad_M->solverInfo, &control_Velocidad_M->Timing.stepSize0); rtsiSetErrorStatusPtr(&control_Velocidad_M->solverInfo, (&rtmGetErrorStatus (control_Velocidad_M))); rtsiSetRTModelPtr(&control_Velocidad_M->solverInfo, control_Velocidad_M); } rtsiSetSimTimeStep(&control_Velocidad_M->solverInfo, MAJOR_TIME_STEP); rtsiSetIsMinorTimeStepWithModeChange(&control_Velocidad_M->solverInfo, false); rtsiSetIsContModeFrozen(&control_Velocidad_M->solverInfo, false); rtsiSetSolverName(&control_Velocidad_M->solverInfo,"FixedStepDiscrete"); control_Velocidad_M->solverInfoPtr = (&control_Velocidad_M->solverInfo); /* Initialize timing info */ { int_T *mdlTsMap = control_Velocidad_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; mdlTsMap[2] = 2; control_Velocidad_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); control_Velocidad_M->Timing.sampleTimes = (&control_Velocidad_M->Timing.sampleTimesArray[0]); control_Velocidad_M->Timing.offsetTimes = (&control_Velocidad_M->Timing.offsetTimesArray[0]); /* task periods */ control_Velocidad_M->Timing.sampleTimes[0] = (0.0); control_Velocidad_M->Timing.sampleTimes[1] = (3.8461538461538463E-5); control_Velocidad_M->Timing.sampleTimes[2] = (0.001); /* task offsets */ control_Velocidad_M->Timing.offsetTimes[0] = (0.0); control_Velocidad_M->Timing.offsetTimes[1] = (0.0); control_Velocidad_M->Timing.offsetTimes[2] = (0.0); } rtmSetTPtr(control_Velocidad_M, &control_Velocidad_M->Timing.tArray[0]); { int_T *mdlSampleHits = control_Velocidad_M->Timing.sampleHitArray; int_T *mdlPerTaskSampleHits = control_Velocidad_M->Timing.perTaskSampleHitsArray; control_Velocidad_M->Timing.perTaskSampleHits = (&mdlPerTaskSampleHits[0]); mdlSampleHits[0] = 1; control_Velocidad_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(control_Velocidad_M, -1); control_Velocidad_M->Timing.stepSize0 = 3.8461538461538463E-5; control_Velocidad_M->Timing.stepSize1 = 3.8461538461538463E-5; control_Velocidad_M->Timing.stepSize2 = 0.001; control_Velocidad_M->solverInfoPtr = (&control_Velocidad_M->solverInfo); control_Velocidad_M->Timing.stepSize = (3.8461538461538463E-5); rtsiSetFixedStepSize(&control_Velocidad_M->solverInfo, 3.8461538461538463E-5); rtsiSetSolverMode(&control_Velocidad_M->solverInfo, SOLVER_MODE_MULTITASKING); /* block I/O */ (void) std::memset((static_cast(&control_Velocidad_B)), 0, sizeof(B_control_Velocidad_T)); /* states (dwork) */ (void) std::memset(static_cast(&control_Velocidad_DW), 0, sizeof(DW_control_Velocidad_T)); /* child S-Function registration */ { RTWSfcnInfo *sfcnInfo = &control_Velocidad_M->NonInlinedSFcns.sfcnInfo; control_Velocidad_M->sfcnInfo = (sfcnInfo); rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(control_Velocidad_M))); control_Velocidad_M->Sizes.numSampTimes = (3); rtssSetNumRootSampTimesPtr(sfcnInfo, &control_Velocidad_M->Sizes.numSampTimes); control_Velocidad_M->NonInlinedSFcns.taskTimePtrs[0] = (&rtmGetTPtr (control_Velocidad_M)[0]); control_Velocidad_M->NonInlinedSFcns.taskTimePtrs[1] = (&rtmGetTPtr (control_Velocidad_M)[1]); control_Velocidad_M->NonInlinedSFcns.taskTimePtrs[2] = (&rtmGetTPtr (control_Velocidad_M)[2]); rtssSetTPtrPtr(sfcnInfo,control_Velocidad_M->NonInlinedSFcns.taskTimePtrs); rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(control_Velocidad_M)); rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(control_Velocidad_M)); rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput (control_Velocidad_M)); rtssSetStepSizePtr(sfcnInfo, &control_Velocidad_M->Timing.stepSize); rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(control_Velocidad_M)); rtssSetDerivCacheNeedsResetPtr(sfcnInfo, &control_Velocidad_M->derivCacheNeedsReset); rtssSetZCCacheNeedsResetPtr(sfcnInfo, &control_Velocidad_M->zCCacheNeedsReset); rtssSetContTimeOutputInconsistentWithStateAtMajorStepPtr(sfcnInfo, &control_Velocidad_M->CTOutputIncnstWithState); rtssSetSampleHitsPtr(sfcnInfo, &control_Velocidad_M->Timing.sampleHits); rtssSetPerTaskSampleHitsPtr(sfcnInfo, &control_Velocidad_M->Timing.perTaskSampleHits); rtssSetSimModePtr(sfcnInfo, &control_Velocidad_M->simMode); rtssSetSolverInfoPtr(sfcnInfo, &control_Velocidad_M->solverInfoPtr); } control_Velocidad_M->Sizes.numSFcns = (3); /* register each child */ { (void) std::memset(static_cast (&control_Velocidad_M->NonInlinedSFcns.childSFunctions[0]), 0, 3*sizeof(SimStruct)); control_Velocidad_M->childSfunctions = (&control_Velocidad_M->NonInlinedSFcns.childSFunctionPtrs[0]); control_Velocidad_M->childSfunctions[0] = (&control_Velocidad_M->NonInlinedSFcns.childSFunctions[0]); control_Velocidad_M->childSfunctions[1] = (&control_Velocidad_M->NonInlinedSFcns.childSFunctions[1]); control_Velocidad_M->childSfunctions[2] = (&control_Velocidad_M->NonInlinedSFcns.childSFunctions[2]); /* Level2 S-Function Block: control_Velocidad//Digital output (sg_fpga_do_sf_a2) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[0]; /* timing info */ time_T *sfcnPeriod = control_Velocidad_M->NonInlinedSFcns.Sfcn0.sfcnPeriod; time_T *sfcnOffset = control_Velocidad_M->NonInlinedSFcns.Sfcn0.sfcnOffset; int_T *sfcnTsMap = control_Velocidad_M->NonInlinedSFcns.Sfcn0.sfcnTsMap; (void) std::memset(static_cast(sfcnPeriod), 0, sizeof(time_T)*1); (void) std::memset(static_cast(sfcnOffset), 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); { ssSetBlkInfo2Ptr(rts, &control_Velocidad_M->NonInlinedSFcns.blkInfo2[0]); } _ssSetBlkInfo2PortInfo2Ptr(rts, &control_Velocidad_M->NonInlinedSFcns.inputOutputPortInfo2[0]); /* Set up the mdlInfo pointer */ ssSetRTWSfcnInfo(rts, control_Velocidad_M->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &control_Velocidad_M->NonInlinedSFcns.methods2[0]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &control_Velocidad_M->NonInlinedSFcns.methods3[0]); } /* Allocate memory of model methods 4 */ { ssSetModelMethods4(rts, &control_Velocidad_M->NonInlinedSFcns.methods4[0]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &control_Velocidad_M->NonInlinedSFcns.statesInfo2 [0]); ssSetPeriodicStatesInfo(rts, &control_Velocidad_M->NonInlinedSFcns.periodicStatesInfo[0]); } /* inputs */ { _ssSetNumInputPorts(rts, 6); ssSetPortInfoForInputs(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]); ssSetPortInfoForInputs(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]); _ssSetPortInfo2ForInputUnits(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn0.inputPortUnits[0]); ssSetInputPortUnit(rts, 0, 0); ssSetInputPortUnit(rts, 1, 0); ssSetInputPortUnit(rts, 2, 0); ssSetInputPortUnit(rts, 3, 0); ssSetInputPortUnit(rts, 4, 0); ssSetInputPortUnit(rts, 5, 0); _ssSetPortInfo2ForInputCoSimAttribute(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn0.inputPortCoSimAttribute[0]); ssSetInputPortIsContinuousQuantity(rts, 0, 0); ssSetInputPortIsContinuousQuantity(rts, 1, 0); ssSetInputPortIsContinuousQuantity(rts, 2, 0); ssSetInputPortIsContinuousQuantity(rts, 3, 0); ssSetInputPortIsContinuousQuantity(rts, 4, 0); ssSetInputPortIsContinuousQuantity(rts, 5, 0); /* port 0 */ { ssSetInputPortRequiredContiguous(rts, 0, 1); ssSetInputPortSignal(rts, 0, &control_Velocidad_B.DataTypeConversion[0]); _ssSetInputPortNumDimensions(rts, 0, 1); ssSetInputPortWidthAsInt(rts, 0, 1); } /* port 1 */ { ssSetInputPortRequiredContiguous(rts, 1, 1); ssSetInputPortSignal(rts, 1, &control_Velocidad_B.DataTypeConversion[1]); _ssSetInputPortNumDimensions(rts, 1, 1); ssSetInputPortWidthAsInt(rts, 1, 1); } /* port 2 */ { ssSetInputPortRequiredContiguous(rts, 2, 1); ssSetInputPortSignal(rts, 2, &control_Velocidad_B.DataTypeConversion[2]); _ssSetInputPortNumDimensions(rts, 2, 1); ssSetInputPortWidthAsInt(rts, 2, 1); } /* port 3 */ { ssSetInputPortRequiredContiguous(rts, 3, 1); ssSetInputPortSignal(rts, 3, &control_Velocidad_B.DataTypeConversion[3]); _ssSetInputPortNumDimensions(rts, 3, 1); ssSetInputPortWidthAsInt(rts, 3, 1); } /* port 4 */ { ssSetInputPortRequiredContiguous(rts, 4, 1); ssSetInputPortSignal(rts, 4, &control_Velocidad_B.DataTypeConversion[4]); _ssSetInputPortNumDimensions(rts, 4, 1); ssSetInputPortWidthAsInt(rts, 4, 1); } /* port 5 */ { ssSetInputPortRequiredContiguous(rts, 5, 1); ssSetInputPortSignal(rts, 5, &control_Velocidad_B.DataTypeConversion[5]); _ssSetInputPortNumDimensions(rts, 5, 1); ssSetInputPortWidthAsInt(rts, 5, 1); } } /* path info */ ssSetModelName(rts, "Digital output"); ssSetPath(rts, "control_Velocidad/Digital output"); ssSetRTModel(rts,control_Velocidad_M); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* parameters */ { mxArray **sfcnParams = (mxArray **) &control_Velocidad_M->NonInlinedSFcns.Sfcn0.params; ssSetSFcnParamsCount(rts, 6); ssSetSFcnParamsPtr(rts, &sfcnParams[0]); ssSetSFcnParam(rts, 0, (mxArray*) control_Velocidad_cal->Digitaloutput_P1_Size); ssSetSFcnParam(rts, 1, (mxArray*) control_Velocidad_cal->Digitaloutput_P2_Size); ssSetSFcnParam(rts, 2, (mxArray*) control_Velocidad_cal->Digitaloutput_P3_Size); ssSetSFcnParam(rts, 3, (mxArray*) control_Velocidad_cal->Digitaloutput_P4_Size); ssSetSFcnParam(rts, 4, (mxArray*) control_Velocidad_cal->Digitaloutput_P5_Size); ssSetSFcnParam(rts, 5, (mxArray*) control_Velocidad_cal->Digitaloutput_P6_Size); } /* work vectors */ ssSetIWork(rts, (int_T *) &control_Velocidad_DW.Digitaloutput_IWORK); ssSetPWork(rts, (void **) &control_Velocidad_DW.Digitaloutput_PWORK[0]); { struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *) &control_Velocidad_M->NonInlinedSFcns.Sfcn0.dWork; struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *) &control_Velocidad_M->NonInlinedSFcns.Sfcn0.dWorkAux; ssSetSFcnDWork(rts, dWorkRecord); ssSetSFcnDWorkAux(rts, dWorkAuxRecord); ssSetNumDWorkAsInt(rts, 2); /* IWORK */ ssSetDWorkWidthAsInt(rts, 0, 1); ssSetDWorkDataType(rts, 0,SS_INTEGER); ssSetDWorkComplexSignal(rts, 0, 0); ssSetDWork(rts, 0, &control_Velocidad_DW.Digitaloutput_IWORK); /* PWORK */ ssSetDWorkWidthAsInt(rts, 1, 2); ssSetDWorkDataType(rts, 1,SS_POINTER); ssSetDWorkComplexSignal(rts, 1, 0); ssSetDWork(rts, 1, &control_Velocidad_DW.Digitaloutput_PWORK[0]); } /* registration */ sg_fpga_do_sf_a2(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 3.8461538461538463E-5); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 1; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCsAsInt(rts, 0); /* Update connectivity flags for each port */ _ssSetInputPortConnected(rts, 0, 1); _ssSetInputPortConnected(rts, 1, 1); _ssSetInputPortConnected(rts, 2, 1); _ssSetInputPortConnected(rts, 3, 1); _ssSetInputPortConnected(rts, 4, 1); _ssSetInputPortConnected(rts, 5, 1); /* Update the BufferDstPort flags for each input port */ ssSetInputPortBufferDstPort(rts, 0, -1); ssSetInputPortBufferDstPort(rts, 1, -1); ssSetInputPortBufferDstPort(rts, 2, -1); ssSetInputPortBufferDstPort(rts, 3, -1); ssSetInputPortBufferDstPort(rts, 4, -1); ssSetInputPortBufferDstPort(rts, 5, -1); } /* Level2 S-Function Block: control_Velocidad//Digital input (sg_fpga_di_sf_a2) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[1]; /* timing info */ time_T *sfcnPeriod = control_Velocidad_M->NonInlinedSFcns.Sfcn1.sfcnPeriod; time_T *sfcnOffset = control_Velocidad_M->NonInlinedSFcns.Sfcn1.sfcnOffset; int_T *sfcnTsMap = control_Velocidad_M->NonInlinedSFcns.Sfcn1.sfcnTsMap; (void) std::memset(static_cast(sfcnPeriod), 0, sizeof(time_T)*1); (void) std::memset(static_cast(sfcnOffset), 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); { ssSetBlkInfo2Ptr(rts, &control_Velocidad_M->NonInlinedSFcns.blkInfo2[1]); } _ssSetBlkInfo2PortInfo2Ptr(rts, &control_Velocidad_M->NonInlinedSFcns.inputOutputPortInfo2[1]); /* Set up the mdlInfo pointer */ ssSetRTWSfcnInfo(rts, control_Velocidad_M->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &control_Velocidad_M->NonInlinedSFcns.methods2[1]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &control_Velocidad_M->NonInlinedSFcns.methods3[1]); } /* Allocate memory of model methods 4 */ { ssSetModelMethods4(rts, &control_Velocidad_M->NonInlinedSFcns.methods4[1]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &control_Velocidad_M->NonInlinedSFcns.statesInfo2 [1]); ssSetPeriodicStatesInfo(rts, &control_Velocidad_M->NonInlinedSFcns.periodicStatesInfo[1]); } /* outputs */ { ssSetPortInfoForOutputs(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn1.outputPortInfo[0]); ssSetPortInfoForOutputs(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn1.outputPortInfo[0]); _ssSetNumOutputPorts(rts, 2); _ssSetPortInfo2ForOutputUnits(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn1.outputPortUnits[0]); ssSetOutputPortUnit(rts, 0, 0); ssSetOutputPortUnit(rts, 1, 0); _ssSetPortInfo2ForOutputCoSimAttribute(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn1.outputPortCoSimAttribute[0]); ssSetOutputPortIsContinuousQuantity(rts, 0, 0); ssSetOutputPortIsContinuousQuantity(rts, 1, 0); /* port 0 */ { _ssSetOutputPortNumDimensions(rts, 0, 1); ssSetOutputPortWidthAsInt(rts, 0, 1); ssSetOutputPortSignal(rts, 0, ((real_T *) &control_Velocidad_B.Digitalinput_o1)); } /* port 1 */ { _ssSetOutputPortNumDimensions(rts, 1, 1); ssSetOutputPortWidthAsInt(rts, 1, 1); ssSetOutputPortSignal(rts, 1, ((real_T *) &control_Velocidad_B.Digitalinput_o2)); } } /* path info */ ssSetModelName(rts, "Digital input"); ssSetPath(rts, "control_Velocidad/Digital input"); ssSetRTModel(rts,control_Velocidad_M); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* parameters */ { mxArray **sfcnParams = (mxArray **) &control_Velocidad_M->NonInlinedSFcns.Sfcn1.params; ssSetSFcnParamsCount(rts, 4); ssSetSFcnParamsPtr(rts, &sfcnParams[0]); ssSetSFcnParam(rts, 0, (mxArray*) control_Velocidad_cal->Digitalinput_P1_Size); ssSetSFcnParam(rts, 1, (mxArray*) control_Velocidad_cal->Digitalinput_P2_Size); ssSetSFcnParam(rts, 2, (mxArray*) control_Velocidad_cal->Digitalinput_P3_Size); ssSetSFcnParam(rts, 3, (mxArray*) control_Velocidad_cal->Digitalinput_P4_Size); } /* work vectors */ ssSetPWork(rts, (void **) &control_Velocidad_DW.Digitalinput_PWORK[0]); { struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *) &control_Velocidad_M->NonInlinedSFcns.Sfcn1.dWork; struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *) &control_Velocidad_M->NonInlinedSFcns.Sfcn1.dWorkAux; ssSetSFcnDWork(rts, dWorkRecord); ssSetSFcnDWorkAux(rts, dWorkAuxRecord); ssSetNumDWorkAsInt(rts, 1); /* PWORK */ ssSetDWorkWidthAsInt(rts, 0, 2); ssSetDWorkDataType(rts, 0,SS_POINTER); ssSetDWorkComplexSignal(rts, 0, 0); ssSetDWork(rts, 0, &control_Velocidad_DW.Digitalinput_PWORK[0]); } /* registration */ sg_fpga_di_sf_a2(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 3.8461538461538463E-5); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 1; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCsAsInt(rts, 0); /* Update connectivity flags for each port */ _ssSetOutputPortConnected(rts, 0, 1); _ssSetOutputPortConnected(rts, 1, 1); _ssSetOutputPortBeingMerged(rts, 0, 0); _ssSetOutputPortBeingMerged(rts, 1, 0); /* Update the BufferDstPort flags for each input port */ } /* Level2 S-Function Block: control_Velocidad//IO397 Analog Input (sg_fpga_IO397_ad) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[2]; /* timing info */ time_T *sfcnPeriod = control_Velocidad_M->NonInlinedSFcns.Sfcn2.sfcnPeriod; time_T *sfcnOffset = control_Velocidad_M->NonInlinedSFcns.Sfcn2.sfcnOffset; int_T *sfcnTsMap = control_Velocidad_M->NonInlinedSFcns.Sfcn2.sfcnTsMap; (void) std::memset(static_cast(sfcnPeriod), 0, sizeof(time_T)*1); (void) std::memset(static_cast(sfcnOffset), 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); { ssSetBlkInfo2Ptr(rts, &control_Velocidad_M->NonInlinedSFcns.blkInfo2[2]); } _ssSetBlkInfo2PortInfo2Ptr(rts, &control_Velocidad_M->NonInlinedSFcns.inputOutputPortInfo2[2]); /* Set up the mdlInfo pointer */ ssSetRTWSfcnInfo(rts, control_Velocidad_M->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &control_Velocidad_M->NonInlinedSFcns.methods2[2]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &control_Velocidad_M->NonInlinedSFcns.methods3[2]); } /* Allocate memory of model methods 4 */ { ssSetModelMethods4(rts, &control_Velocidad_M->NonInlinedSFcns.methods4[2]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &control_Velocidad_M->NonInlinedSFcns.statesInfo2 [2]); ssSetPeriodicStatesInfo(rts, &control_Velocidad_M->NonInlinedSFcns.periodicStatesInfo[2]); } /* outputs */ { ssSetPortInfoForOutputs(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn2.outputPortInfo[0]); ssSetPortInfoForOutputs(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn2.outputPortInfo[0]); _ssSetNumOutputPorts(rts, 3); _ssSetPortInfo2ForOutputUnits(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn2.outputPortUnits[0]); ssSetOutputPortUnit(rts, 0, 0); ssSetOutputPortUnit(rts, 1, 0); ssSetOutputPortUnit(rts, 2, 0); _ssSetPortInfo2ForOutputCoSimAttribute(rts, &control_Velocidad_M->NonInlinedSFcns.Sfcn2.outputPortCoSimAttribute[0]); ssSetOutputPortIsContinuousQuantity(rts, 0, 0); ssSetOutputPortIsContinuousQuantity(rts, 1, 0); ssSetOutputPortIsContinuousQuantity(rts, 2, 0); /* port 0 */ { _ssSetOutputPortNumDimensions(rts, 0, 1); ssSetOutputPortWidthAsInt(rts, 0, 1); ssSetOutputPortSignal(rts, 0, ((real_T *) &control_Velocidad_B.IO397AnalogInput_o1)); } /* port 1 */ { _ssSetOutputPortNumDimensions(rts, 1, 1); ssSetOutputPortWidthAsInt(rts, 1, 1); ssSetOutputPortSignal(rts, 1, ((real_T *) &control_Velocidad_B.IO397AnalogInput_o2)); } /* port 2 */ { _ssSetOutputPortNumDimensions(rts, 2, 1); ssSetOutputPortWidthAsInt(rts, 2, 1); ssSetOutputPortSignal(rts, 2, ((real_T *) &control_Velocidad_B.IO397AnalogInput_o3)); } } /* path info */ ssSetModelName(rts, "IO397 Analog Input"); ssSetPath(rts, "control_Velocidad/IO397 Analog Input"); ssSetRTModel(rts,control_Velocidad_M); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* parameters */ { mxArray **sfcnParams = (mxArray **) &control_Velocidad_M->NonInlinedSFcns.Sfcn2.params; ssSetSFcnParamsCount(rts, 9); ssSetSFcnParamsPtr(rts, &sfcnParams[0]); ssSetSFcnParam(rts, 0, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P1_Size); ssSetSFcnParam(rts, 1, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P2_Size); ssSetSFcnParam(rts, 2, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P3_Size); ssSetSFcnParam(rts, 3, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P4_Size); ssSetSFcnParam(rts, 4, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P5_Size); ssSetSFcnParam(rts, 5, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P6_Size); ssSetSFcnParam(rts, 6, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P7_Size); ssSetSFcnParam(rts, 7, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P8_Size); ssSetSFcnParam(rts, 8, (mxArray*) control_Velocidad_cal->IO397AnalogInput_P9_Size); } /* work vectors */ ssSetPWork(rts, (void **) &control_Velocidad_DW.IO397AnalogInput_PWORK[0]); { struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *) &control_Velocidad_M->NonInlinedSFcns.Sfcn2.dWork; struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *) &control_Velocidad_M->NonInlinedSFcns.Sfcn2.dWorkAux; ssSetSFcnDWork(rts, dWorkRecord); ssSetSFcnDWorkAux(rts, dWorkAuxRecord); ssSetNumDWorkAsInt(rts, 1); /* PWORK */ ssSetDWorkWidthAsInt(rts, 0, 3); ssSetDWorkDataType(rts, 0,SS_POINTER); ssSetDWorkComplexSignal(rts, 0, 0); ssSetDWork(rts, 0, &control_Velocidad_DW.IO397AnalogInput_PWORK[0]); } /* registration */ sg_fpga_IO397_ad(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 0.001); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 2; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCsAsInt(rts, 0); /* Update connectivity flags for each port */ _ssSetOutputPortConnected(rts, 0, 1); _ssSetOutputPortConnected(rts, 1, 1); _ssSetOutputPortConnected(rts, 2, 1); _ssSetOutputPortBeingMerged(rts, 0, 0); _ssSetOutputPortBeingMerged(rts, 1, 0); _ssSetOutputPortBeingMerged(rts, 2, 0); /* Update the BufferDstPort flags for each input port */ } } /* Start for S-Function (sg_fpga_do_sf_a2): '/Digital output' */ /* Level2 S-Function Block: '/Digital output' (sg_fpga_do_sf_a2) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[0]; sfcnStart(rts); if (ssGetErrorStatus(rts) != (NULL)) return; } /* Start for S-Function (sg_fpga_di_sf_a2): '/Digital input' */ /* Level2 S-Function Block: '/Digital input' (sg_fpga_di_sf_a2) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[1]; sfcnStart(rts); if (ssGetErrorStatus(rts) != (NULL)) return; } /* Start for S-Function (sg_fpga_IO397_ad): '/IO397 Analog Input' */ /* Level2 S-Function Block: '/IO397 Analog Input' (sg_fpga_IO397_ad) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[2]; sfcnStart(rts); if (ssGetErrorStatus(rts) != (NULL)) return; } control_Velocidad_PrevZCX.TriggeredSubsystem_Trig_ZCE = POS_ZCSIG; control_Velocidad_PrevZCX.SampleandHold1_Trig_ZCE = POS_ZCSIG; /* InitializeConditions for DiscreteIntegrator: '/Discrete-Time Integrator' */ control_Velocidad_DW.DiscreteTimeIntegrator_DSTATE = control_Velocidad_cal->DiscreteTimeIntegrator_IC; /* InitializeConditions for Delay: '/Delay1' */ control_Velocidad_DW.Delay1_DSTATE = control_Velocidad_cal->Delay1_InitialCondition; /* InitializeConditions for Memory: '/Memory' */ control_Velocidad_DW.Memory_PreviousInput = control_Velocidad_cal->EdgeDetector_ic; /* InitializeConditions for UnitDelay: '/UD' */ control_Velocidad_DW.UD_DSTATE = control_Velocidad_cal->Difference1_ICPrevInput; /* InitializeConditions for Delay: '/Delay' */ control_Velocidad_DW.Delay_DSTATE = control_Velocidad_cal->Delay_InitialCondition; /* SystemInitialize for Triggered SubSystem: '/Triggered Subsystem' */ /* SystemInitialize for SignalConversion generated from: '/In1' incorporates: * Outport: '/Out1' */ control_Velocidad_B.In1 = control_Velocidad_cal->Out1_Y0; /* End of SystemInitialize for SubSystem: '/Triggered Subsystem' */ /* SystemInitialize for Enabled SubSystem: '/NEGATIVE Edge' */ /* SystemInitialize for RelationalOperator: '/Relational Operator1' incorporates: * Outport: '/OUT' */ control_Velocidad_B.RelationalOperator1_e = control_Velocidad_cal->OUT_Y0; /* End of SystemInitialize for SubSystem: '/NEGATIVE Edge' */ /* SystemInitialize for Enabled SubSystem: '/POSITIVE Edge' */ /* SystemInitialize for RelationalOperator: '/Relational Operator1' incorporates: * Outport: '/OUT' */ control_Velocidad_B.RelationalOperator1 = control_Velocidad_cal->OUT_Y0_p; /* End of SystemInitialize for SubSystem: '/POSITIVE Edge' */ /* SystemInitialize for Triggered SubSystem: '/Sample and Hold1' */ /* SystemInitialize for SignalConversion generated from: '/In' incorporates: * Outport: '/ ' */ control_Velocidad_B.In = control_Velocidad_cal->_Y0; /* End of SystemInitialize for SubSystem: '/Sample and Hold1' */ } /* Model terminate function */ void control_Velocidad_terminate(void) { /* Terminate for S-Function (sg_fpga_do_sf_a2): '/Digital output' */ /* Level2 S-Function Block: '/Digital output' (sg_fpga_do_sf_a2) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[0]; sfcnTerminate(rts); } /* Terminate for S-Function (sg_fpga_di_sf_a2): '/Digital input' */ /* Level2 S-Function Block: '/Digital input' (sg_fpga_di_sf_a2) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[1]; sfcnTerminate(rts); } /* Terminate for S-Function (sg_fpga_IO397_ad): '/IO397 Analog Input' */ /* Level2 S-Function Block: '/IO397 Analog Input' (sg_fpga_IO397_ad) */ { SimStruct *rts = control_Velocidad_M->childSfunctions[2]; sfcnTerminate(rts); } /* user code (Terminate function Trailer) */ { freeFPGAModuleSgLib((uint32_t)1); } }