/* * Test_LOGICA_3FPWM.cpp * * Academic License - for use in teaching, academic research, and meeting * course requirements at degree granting institutions only. Not for * government, commercial, or other organizational use. * * Code generation for model "Test_LOGICA_3FPWM". * * Model version : 1.48 * Simulink Coder version : 24.2 (R2024b) 21-Jun-2024 * C++ source code generated on : Wed Jul 23 11:33:04 2025 * * Target selection: speedgoat.tlc * Note: GRT includes extra infrastructure and instrumentation for prototyping * Embedded hardware selection: Intel->x86-64 (Linux 64) * Code generation objectives: Unspecified * Validation result: Not run */ #include "Test_LOGICA_3FPWM.h" #include "Test_LOGICA_3FPWM_cal.h" #include "Test_LOGICA_3FPWM_private.h" #include "rtwtypes.h" #include extern "C" { #include "rt_nonfinite.h" } #include #include /* Block signals (default storage) */ B_Test_LOGICA_3FPWM_T Test_LOGICA_3FPWM_B; /* Block states (default storage) */ DW_Test_LOGICA_3FPWM_T Test_LOGICA_3FPWM_DW; /* Real-time model */ RT_MODEL_Test_LOGICA_3FPWM_T Test_LOGICA_3FPWM_M_ = RT_MODEL_Test_LOGICA_3FPWM_T (); RT_MODEL_Test_LOGICA_3FPWM_T *const Test_LOGICA_3FPWM_M = &Test_LOGICA_3FPWM_M_; real_T look1_pbinlxpw(real_T u0, const real_T bp0[], const real_T table[], uint32_T prevIndex[], uint32_T maxIndex) { real_T frac; real_T yL_0d0; uint32_T bpIdx; /* Column-major Lookup 1-D Search method: 'binary' Use previous index: 'on' Interpolation method: 'Linear point-slope' Extrapolation method: 'Linear' Use last breakpoint for index at or above upper limit: 'off' Remove protection against out-of-range input in generated code: 'off' */ /* Prelookup - Index and Fraction Index Search method: 'binary' Extrapolation method: 'Linear' Use previous index: 'on' Use last breakpoint for index at or above upper limit: 'off' Remove protection against out-of-range input in generated code: 'off' */ if (u0 <= bp0[0U]) { bpIdx = 0U; frac = (u0 - bp0[0U]) / (bp0[1U] - bp0[0U]); } else if (u0 < bp0[maxIndex]) { uint32_T found; uint32_T iLeft; uint32_T iRght; /* Binary Search using Previous Index */ bpIdx = prevIndex[0U]; iLeft = 0U; iRght = maxIndex; found = 0U; while (found == 0U) { if (u0 < bp0[bpIdx]) { iRght = bpIdx - 1U; bpIdx = ((bpIdx + iLeft) - 1U) >> 1U; } else if (u0 < bp0[bpIdx + 1U]) { found = 1U; } else { iLeft = bpIdx + 1U; bpIdx = ((bpIdx + iRght) + 1U) >> 1U; } } frac = (u0 - bp0[bpIdx]) / (bp0[bpIdx + 1U] - bp0[bpIdx]); } else { bpIdx = maxIndex - 1U; frac = (u0 - bp0[maxIndex - 1U]) / (bp0[maxIndex] - bp0[maxIndex - 1U]); } prevIndex[0U] = bpIdx; /* Column-major Interpolation 1-D Interpolation method: 'Linear point-slope' Use last breakpoint for index at or above upper limit: 'off' Overflow mode: 'portable wrapping' */ yL_0d0 = table[bpIdx]; return (table[bpIdx + 1U] - yL_0d0) * frac + yL_0d0; } real_T rt_remd_snf(real_T u0, real_T u1) { real_T y; if (rtIsNaN(u0) || rtIsNaN(u1) || rtIsInf(u0)) { y = (rtNaN); } else if (rtIsInf(u1)) { y = u0; } else { if (u1 < 0.0) { y = std::ceil(u1); } else { y = std::floor(u1); } if ((u1 != 0.0) && (u1 != y)) { real_T q; q = std::abs(u0 / u1); if (!(std::abs(q - std::floor(q + 0.5)) > DBL_EPSILON * q)) { y = 0.0 * u0; } else { y = std::fmod(u0, u1); } } else { y = std::fmod(u0, u1); } } return y; } /* Model step function */ void Test_LOGICA_3FPWM_step(void) { /* DigitalClock: '/Digital Clock' */ Test_LOGICA_3FPWM_B.DigitalClock = Test_LOGICA_3FPWM_M->Timing.t[0]; /* Sum: '/Add1' incorporates: * Constant: '/Constant3' */ Test_LOGICA_3FPWM_B.Add1 = Test_LOGICA_3FPWM_B.DigitalClock + Test_LOGICA_3FPWM_cal->Constant3_Value; /* Math: '/Math Function' incorporates: * Constant: '/Constant1' */ Test_LOGICA_3FPWM_B.MathFunction = rt_remd_snf(Test_LOGICA_3FPWM_B.Add1, Test_LOGICA_3FPWM_cal->Constant1_Value); /* Gain: '/1\ib1' */ Test_LOGICA_3FPWM_B.uib1 = Test_LOGICA_3FPWM_cal->uib1_Gain * Test_LOGICA_3FPWM_B.MathFunction; /* Lookup_n-D: '/1-D Lookup Table' incorporates: * Gain: '/1\ib1' */ Test_LOGICA_3FPWM_B.uDLookupTable = look1_pbinlxpw(Test_LOGICA_3FPWM_B.uib1, Test_LOGICA_3FPWM_cal->uDLookupTable_bp01Data, Test_LOGICA_3FPWM_cal->uDLookupTable_tableData, &Test_LOGICA_3FPWM_DW.m_bpIndex, 2U); /* Sum: '/Add3' incorporates: * Constant: '/Constant2' */ Test_LOGICA_3FPWM_B.Add3 = Test_LOGICA_3FPWM_B.uDLookupTable - Test_LOGICA_3FPWM_cal->Constant2_Value; /* Sum: '/Add3' incorporates: * Constant: '/Constant10' */ Test_LOGICA_3FPWM_B.Add3_j = Test_LOGICA_3FPWM_cal->PWMGenerator2Level_MinMax [1] - Test_LOGICA_3FPWM_cal->PWMGenerator2Level_MinMax[0]; /* Gain: '/Gain1' */ Test_LOGICA_3FPWM_B.Gain1 = Test_LOGICA_3FPWM_cal->Gain1_Gain * Test_LOGICA_3FPWM_B.Add3_j; /* Product: '/MUL1' */ Test_LOGICA_3FPWM_B.MUL1 = Test_LOGICA_3FPWM_B.Add3 * Test_LOGICA_3FPWM_B.Gain1; /* Sum: '/Add4' incorporates: * Constant: '/Constant10' */ Test_LOGICA_3FPWM_B.Add4 = (Test_LOGICA_3FPWM_cal->PWMGenerator2Level_MinMax[0] + Test_LOGICA_3FPWM_B.MUL1) + Test_LOGICA_3FPWM_B.Gain1; /* RelationalOperator: '/Relational Operator2' incorporates: * Constant: '/Va' * Constant: '/Vb' * Constant: '/Vc' */ Test_LOGICA_3FPWM_B.RelationalOperator2[0] = (Test_LOGICA_3FPWM_cal->Va_Value >= Test_LOGICA_3FPWM_B.Add4); Test_LOGICA_3FPWM_B.RelationalOperator2[1] = (Test_LOGICA_3FPWM_cal->Vb_Value >= Test_LOGICA_3FPWM_B.Add4); Test_LOGICA_3FPWM_B.RelationalOperator2[2] = (Test_LOGICA_3FPWM_cal->Vc_Value >= Test_LOGICA_3FPWM_B.Add4); /* Logic: '/Logical Operator4' */ Test_LOGICA_3FPWM_B.LogicalOperator4[0] = !Test_LOGICA_3FPWM_B.RelationalOperator2[0]; Test_LOGICA_3FPWM_B.LogicalOperator4[1] = !Test_LOGICA_3FPWM_B.RelationalOperator2[1]; Test_LOGICA_3FPWM_B.LogicalOperator4[2] = !Test_LOGICA_3FPWM_B.RelationalOperator2[2]; /* DataTypeConversion: '/Data Type Conversion' */ Test_LOGICA_3FPWM_B.DataTypeConversion[0] = Test_LOGICA_3FPWM_B.RelationalOperator2[0]; Test_LOGICA_3FPWM_B.DataTypeConversion[1] = Test_LOGICA_3FPWM_B.LogicalOperator4[0]; Test_LOGICA_3FPWM_B.DataTypeConversion[2] = Test_LOGICA_3FPWM_B.RelationalOperator2[1]; Test_LOGICA_3FPWM_B.DataTypeConversion[3] = Test_LOGICA_3FPWM_B.LogicalOperator4[1]; Test_LOGICA_3FPWM_B.DataTypeConversion[4] = Test_LOGICA_3FPWM_B.RelationalOperator2[2]; Test_LOGICA_3FPWM_B.DataTypeConversion[5] = Test_LOGICA_3FPWM_B.LogicalOperator4[2]; /* S-Function (sg_fpga_do_sf_a2): '/Digital output' */ /* Level2 S-Function Block: '/Digital output' (sg_fpga_do_sf_a2) */ { SimStruct *rts = Test_LOGICA_3FPWM_M->childSfunctions[0]; sfcnOutputs(rts,0); } /* user code (Output function Trailer) */ { } /* Update absolute time for base rate */ /* The "clockTick0" counts the number of times the code of this task has * been executed. The absolute time is the multiplication of "clockTick0" * and "Timing.stepSize0". Size of "clockTick0" ensures timer will not * overflow during the application lifespan selected. * Timer of this task consists of two 32 bit unsigned integers. * The two integers represent the low bits Timing.clockTick0 and the high bits * Timing.clockTickH0. When the low bit overflows to 0, the high bits increment. */ if (!(++Test_LOGICA_3FPWM_M->Timing.clockTick0)) { ++Test_LOGICA_3FPWM_M->Timing.clockTickH0; } Test_LOGICA_3FPWM_M->Timing.t[0] = Test_LOGICA_3FPWM_M->Timing.clockTick0 * Test_LOGICA_3FPWM_M->Timing.stepSize0 + Test_LOGICA_3FPWM_M->Timing.clockTickH0 * Test_LOGICA_3FPWM_M->Timing.stepSize0 * 4294967296.0; } /* Model initialize function */ void Test_LOGICA_3FPWM_initialize(void) { /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); rtsiSetSolverName(&Test_LOGICA_3FPWM_M->solverInfo,"FixedStepDiscrete"); Test_LOGICA_3FPWM_M->solverInfoPtr = (&Test_LOGICA_3FPWM_M->solverInfo); /* Initialize timing info */ { int_T *mdlTsMap = Test_LOGICA_3FPWM_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; Test_LOGICA_3FPWM_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); Test_LOGICA_3FPWM_M->Timing.sampleTimes = (&Test_LOGICA_3FPWM_M->Timing.sampleTimesArray[0]); Test_LOGICA_3FPWM_M->Timing.offsetTimes = (&Test_LOGICA_3FPWM_M->Timing.offsetTimesArray[0]); /* task periods */ Test_LOGICA_3FPWM_M->Timing.sampleTimes[0] = (5.0E-5); /* task offsets */ Test_LOGICA_3FPWM_M->Timing.offsetTimes[0] = (0.0); } rtmSetTPtr(Test_LOGICA_3FPWM_M, &Test_LOGICA_3FPWM_M->Timing.tArray[0]); { int_T *mdlSampleHits = Test_LOGICA_3FPWM_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; Test_LOGICA_3FPWM_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(Test_LOGICA_3FPWM_M, -1); Test_LOGICA_3FPWM_M->Timing.stepSize0 = 5.0E-5; Test_LOGICA_3FPWM_M->solverInfoPtr = (&Test_LOGICA_3FPWM_M->solverInfo); Test_LOGICA_3FPWM_M->Timing.stepSize = (5.0E-5); rtsiSetFixedStepSize(&Test_LOGICA_3FPWM_M->solverInfo, 5.0E-5); rtsiSetSolverMode(&Test_LOGICA_3FPWM_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ (void) std::memset((static_cast(&Test_LOGICA_3FPWM_B)), 0, sizeof(B_Test_LOGICA_3FPWM_T)); /* states (dwork) */ (void) std::memset(static_cast(&Test_LOGICA_3FPWM_DW), 0, sizeof(DW_Test_LOGICA_3FPWM_T)); /* child S-Function registration */ { RTWSfcnInfo *sfcnInfo = &Test_LOGICA_3FPWM_M->NonInlinedSFcns.sfcnInfo; Test_LOGICA_3FPWM_M->sfcnInfo = (sfcnInfo); rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(Test_LOGICA_3FPWM_M))); Test_LOGICA_3FPWM_M->Sizes.numSampTimes = (1); rtssSetNumRootSampTimesPtr(sfcnInfo, &Test_LOGICA_3FPWM_M->Sizes.numSampTimes); Test_LOGICA_3FPWM_M->NonInlinedSFcns.taskTimePtrs[0] = (&rtmGetTPtr (Test_LOGICA_3FPWM_M)[0]); rtssSetTPtrPtr(sfcnInfo,Test_LOGICA_3FPWM_M->NonInlinedSFcns.taskTimePtrs); rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(Test_LOGICA_3FPWM_M)); rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(Test_LOGICA_3FPWM_M)); rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput (Test_LOGICA_3FPWM_M)); rtssSetStepSizePtr(sfcnInfo, &Test_LOGICA_3FPWM_M->Timing.stepSize); rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(Test_LOGICA_3FPWM_M)); rtssSetDerivCacheNeedsResetPtr(sfcnInfo, &Test_LOGICA_3FPWM_M->derivCacheNeedsReset); rtssSetZCCacheNeedsResetPtr(sfcnInfo, &Test_LOGICA_3FPWM_M->zCCacheNeedsReset); rtssSetContTimeOutputInconsistentWithStateAtMajorStepPtr(sfcnInfo, &Test_LOGICA_3FPWM_M->CTOutputIncnstWithState); rtssSetSampleHitsPtr(sfcnInfo, &Test_LOGICA_3FPWM_M->Timing.sampleHits); rtssSetPerTaskSampleHitsPtr(sfcnInfo, &Test_LOGICA_3FPWM_M->Timing.perTaskSampleHits); rtssSetSimModePtr(sfcnInfo, &Test_LOGICA_3FPWM_M->simMode); rtssSetSolverInfoPtr(sfcnInfo, &Test_LOGICA_3FPWM_M->solverInfoPtr); } Test_LOGICA_3FPWM_M->Sizes.numSFcns = (1); /* register each child */ { (void) std::memset(static_cast (&Test_LOGICA_3FPWM_M->NonInlinedSFcns.childSFunctions[0]), 0, 1*sizeof(SimStruct)); Test_LOGICA_3FPWM_M->childSfunctions = (&Test_LOGICA_3FPWM_M->NonInlinedSFcns.childSFunctionPtrs[0]); Test_LOGICA_3FPWM_M->childSfunctions[0] = (&Test_LOGICA_3FPWM_M->NonInlinedSFcns.childSFunctions[0]); /* Level2 S-Function Block: Test_LOGICA_3FPWM//Digital output (sg_fpga_do_sf_a2) */ { SimStruct *rts = Test_LOGICA_3FPWM_M->childSfunctions[0]; /* timing info */ time_T *sfcnPeriod = Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.sfcnPeriod; time_T *sfcnOffset = Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.sfcnOffset; int_T *sfcnTsMap = Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.sfcnTsMap; (void) std::memset(static_cast(sfcnPeriod), 0, sizeof(time_T)*1); (void) std::memset(static_cast(sfcnOffset), 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); { ssSetBlkInfo2Ptr(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.blkInfo2[0]); } _ssSetBlkInfo2PortInfo2Ptr(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.inputOutputPortInfo2[0]); /* Set up the mdlInfo pointer */ ssSetRTWSfcnInfo(rts, Test_LOGICA_3FPWM_M->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.methods2[0]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.methods3[0]); } /* Allocate memory of model methods 4 */ { ssSetModelMethods4(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.methods4[0]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.statesInfo2 [0]); ssSetPeriodicStatesInfo(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.periodicStatesInfo[0]); } /* inputs */ { _ssSetNumInputPorts(rts, 6); ssSetPortInfoForInputs(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]); ssSetPortInfoForInputs(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]); _ssSetPortInfo2ForInputUnits(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.inputPortUnits[0]); ssSetInputPortUnit(rts, 0, 0); ssSetInputPortUnit(rts, 1, 0); ssSetInputPortUnit(rts, 2, 0); ssSetInputPortUnit(rts, 3, 0); ssSetInputPortUnit(rts, 4, 0); ssSetInputPortUnit(rts, 5, 0); _ssSetPortInfo2ForInputCoSimAttribute(rts, &Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.inputPortCoSimAttribute[0]); ssSetInputPortIsContinuousQuantity(rts, 0, 0); ssSetInputPortIsContinuousQuantity(rts, 1, 0); ssSetInputPortIsContinuousQuantity(rts, 2, 0); ssSetInputPortIsContinuousQuantity(rts, 3, 0); ssSetInputPortIsContinuousQuantity(rts, 4, 0); ssSetInputPortIsContinuousQuantity(rts, 5, 0); /* port 0 */ { ssSetInputPortRequiredContiguous(rts, 0, 1); ssSetInputPortSignal(rts, 0, &Test_LOGICA_3FPWM_B.DataTypeConversion[0]); _ssSetInputPortNumDimensions(rts, 0, 1); ssSetInputPortWidthAsInt(rts, 0, 1); } /* port 1 */ { ssSetInputPortRequiredContiguous(rts, 1, 1); ssSetInputPortSignal(rts, 1, &Test_LOGICA_3FPWM_B.DataTypeConversion[1]); _ssSetInputPortNumDimensions(rts, 1, 1); ssSetInputPortWidthAsInt(rts, 1, 1); } /* port 2 */ { ssSetInputPortRequiredContiguous(rts, 2, 1); ssSetInputPortSignal(rts, 2, &Test_LOGICA_3FPWM_B.DataTypeConversion[2]); _ssSetInputPortNumDimensions(rts, 2, 1); ssSetInputPortWidthAsInt(rts, 2, 1); } /* port 3 */ { ssSetInputPortRequiredContiguous(rts, 3, 1); ssSetInputPortSignal(rts, 3, &Test_LOGICA_3FPWM_B.DataTypeConversion[3]); _ssSetInputPortNumDimensions(rts, 3, 1); ssSetInputPortWidthAsInt(rts, 3, 1); } /* port 4 */ { ssSetInputPortRequiredContiguous(rts, 4, 1); ssSetInputPortSignal(rts, 4, &Test_LOGICA_3FPWM_B.DataTypeConversion[4]); _ssSetInputPortNumDimensions(rts, 4, 1); ssSetInputPortWidthAsInt(rts, 4, 1); } /* port 5 */ { ssSetInputPortRequiredContiguous(rts, 5, 1); ssSetInputPortSignal(rts, 5, &Test_LOGICA_3FPWM_B.DataTypeConversion[5]); _ssSetInputPortNumDimensions(rts, 5, 1); ssSetInputPortWidthAsInt(rts, 5, 1); } } /* path info */ ssSetModelName(rts, "Digital output"); ssSetPath(rts, "Test_LOGICA_3FPWM/Digital output"); ssSetRTModel(rts,Test_LOGICA_3FPWM_M); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* parameters */ { mxArray **sfcnParams = (mxArray **) &Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.params; ssSetSFcnParamsCount(rts, 6); ssSetSFcnParamsPtr(rts, &sfcnParams[0]); ssSetSFcnParam(rts, 0, (mxArray*) Test_LOGICA_3FPWM_cal->Digitaloutput_P1_Size); ssSetSFcnParam(rts, 1, (mxArray*) Test_LOGICA_3FPWM_cal->Digitaloutput_P2_Size); ssSetSFcnParam(rts, 2, (mxArray*) Test_LOGICA_3FPWM_cal->Digitaloutput_P3_Size); ssSetSFcnParam(rts, 3, (mxArray*) Test_LOGICA_3FPWM_cal->Digitaloutput_P4_Size); ssSetSFcnParam(rts, 4, (mxArray*) Test_LOGICA_3FPWM_cal->Digitaloutput_P5_Size); ssSetSFcnParam(rts, 5, (mxArray*) Test_LOGICA_3FPWM_cal->Digitaloutput_P6_Size); } /* work vectors */ ssSetIWork(rts, (int_T *) &Test_LOGICA_3FPWM_DW.Digitaloutput_IWORK); ssSetPWork(rts, (void **) &Test_LOGICA_3FPWM_DW.Digitaloutput_PWORK[0]); { struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *) &Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.dWork; struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *) &Test_LOGICA_3FPWM_M->NonInlinedSFcns.Sfcn0.dWorkAux; ssSetSFcnDWork(rts, dWorkRecord); ssSetSFcnDWorkAux(rts, dWorkAuxRecord); ssSetNumDWorkAsInt(rts, 2); /* IWORK */ ssSetDWorkWidthAsInt(rts, 0, 1); ssSetDWorkDataType(rts, 0,SS_INTEGER); ssSetDWorkComplexSignal(rts, 0, 0); ssSetDWork(rts, 0, &Test_LOGICA_3FPWM_DW.Digitaloutput_IWORK); /* PWORK */ ssSetDWorkWidthAsInt(rts, 1, 2); ssSetDWorkDataType(rts, 1,SS_POINTER); ssSetDWorkComplexSignal(rts, 1, 0); ssSetDWork(rts, 1, &Test_LOGICA_3FPWM_DW.Digitaloutput_PWORK[0]); } /* registration */ sg_fpga_do_sf_a2(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 5.0E-5); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 0; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCsAsInt(rts, 0); /* Update connectivity flags for each port */ _ssSetInputPortConnected(rts, 0, 1); _ssSetInputPortConnected(rts, 1, 1); _ssSetInputPortConnected(rts, 2, 1); _ssSetInputPortConnected(rts, 3, 1); _ssSetInputPortConnected(rts, 4, 1); _ssSetInputPortConnected(rts, 5, 1); /* Update the BufferDstPort flags for each input port */ ssSetInputPortBufferDstPort(rts, 0, -1); ssSetInputPortBufferDstPort(rts, 1, -1); ssSetInputPortBufferDstPort(rts, 2, -1); ssSetInputPortBufferDstPort(rts, 3, -1); ssSetInputPortBufferDstPort(rts, 4, -1); ssSetInputPortBufferDstPort(rts, 5, -1); } } /* Start for S-Function (sg_fpga_do_sf_a2): '/Digital output' */ /* Level2 S-Function Block: '/Digital output' (sg_fpga_do_sf_a2) */ { SimStruct *rts = Test_LOGICA_3FPWM_M->childSfunctions[0]; sfcnStart(rts); if (ssGetErrorStatus(rts) != (NULL)) return; } } /* Model terminate function */ void Test_LOGICA_3FPWM_terminate(void) { /* Terminate for S-Function (sg_fpga_do_sf_a2): '/Digital output' */ /* Level2 S-Function Block: '/Digital output' (sg_fpga_do_sf_a2) */ { SimStruct *rts = Test_LOGICA_3FPWM_M->childSfunctions[0]; sfcnTerminate(rts); } /* user code (Terminate function Trailer) */ { freeFPGAModuleSgLib((uint32_t)1); } }