control/Herramientas/GPIO/ArranqueVF_sg_rtw/ArranqueVF.cpp
2025-09-03 11:21:53 +02:00

548 lines
19 KiB
C++

/*
* ArranqueVF.cpp
*
* Academic License - for use in teaching, academic research, and meeting
* course requirements at degree granting institutions only. Not for
* government, commercial, or other organizational use.
*
* Code generation for model "ArranqueVF".
*
* Model version : 1.13
* Simulink Coder version : 24.2 (R2024b) 21-Jun-2024
* C++ source code generated on : Tue Jun 3 11:16:51 2025
*
* Target selection: speedgoat.tlc
* Note: GRT includes extra infrastructure and instrumentation for prototyping
* Embedded hardware selection: Intel->x86-64 (Linux 64)
* Code generation objectives: Unspecified
* Validation result: Not run
*/
#include "ArranqueVF.h"
#include "ArranqueVF_cal.h"
#include "rtwtypes.h"
#include "ArranqueVF_private.h"
#include <cstring>
extern "C"
{
#include "rt_nonfinite.h"
}
const real_T ArranqueVF_RGND = 0.0; /* real_T ground */
/* Block signals (default storage) */
B_ArranqueVF_T ArranqueVF_B;
/* Block states (default storage) */
DW_ArranqueVF_T ArranqueVF_DW;
/* Real-time model */
RT_MODEL_ArranqueVF_T ArranqueVF_M_ = RT_MODEL_ArranqueVF_T();
RT_MODEL_ArranqueVF_T *const ArranqueVF_M = &ArranqueVF_M_;
/* Model step function */
void ArranqueVF_step(void)
{
/* Constant: '<Root>/Constant' */
ArranqueVF_B.Constant = ArranqueVF_cal->Constant_Value;
/* S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output1' */
/* Level2 S-Function Block: '<Root>/Digital output1' (sg_fpga_do_sf_a2) */
{
SimStruct *rts = ArranqueVF_M->childSfunctions[0];
sfcnOutputs(rts,0);
}
/* S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output' */
/* Level2 S-Function Block: '<Root>/Digital output' (sg_fpga_do_sf_a2) */
{
SimStruct *rts = ArranqueVF_M->childSfunctions[1];
sfcnOutputs(rts,0);
}
/* user code (Output function Trailer) */
{
}
/* Update absolute time for base rate */
/* The "clockTick0" counts the number of times the code of this task has
* been executed. The absolute time is the multiplication of "clockTick0"
* and "Timing.stepSize0". Size of "clockTick0" ensures timer will not
* overflow during the application lifespan selected.
* Timer of this task consists of two 32 bit unsigned integers.
* The two integers represent the low bits Timing.clockTick0 and the high bits
* Timing.clockTickH0. When the low bit overflows to 0, the high bits increment.
*/
if (!(++ArranqueVF_M->Timing.clockTick0)) {
++ArranqueVF_M->Timing.clockTickH0;
}
ArranqueVF_M->Timing.t[0] = ArranqueVF_M->Timing.clockTick0 *
ArranqueVF_M->Timing.stepSize0 + ArranqueVF_M->Timing.clockTickH0 *
ArranqueVF_M->Timing.stepSize0 * 4294967296.0;
}
/* Model initialize function */
void ArranqueVF_initialize(void)
{
/* Registration code */
/* initialize non-finites */
rt_InitInfAndNaN(sizeof(real_T));
rtsiSetSolverName(&ArranqueVF_M->solverInfo,"FixedStepDiscrete");
ArranqueVF_M->solverInfoPtr = (&ArranqueVF_M->solverInfo);
/* Initialize timing info */
{
int_T *mdlTsMap = ArranqueVF_M->Timing.sampleTimeTaskIDArray;
mdlTsMap[0] = 0;
ArranqueVF_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
ArranqueVF_M->Timing.sampleTimes = (&ArranqueVF_M->Timing.sampleTimesArray[0]);
ArranqueVF_M->Timing.offsetTimes = (&ArranqueVF_M->Timing.offsetTimesArray[0]);
/* task periods */
ArranqueVF_M->Timing.sampleTimes[0] = (0.0001);
/* task offsets */
ArranqueVF_M->Timing.offsetTimes[0] = (0.0);
}
rtmSetTPtr(ArranqueVF_M, &ArranqueVF_M->Timing.tArray[0]);
{
int_T *mdlSampleHits = ArranqueVF_M->Timing.sampleHitArray;
mdlSampleHits[0] = 1;
ArranqueVF_M->Timing.sampleHits = (&mdlSampleHits[0]);
}
rtmSetTFinal(ArranqueVF_M, -1);
ArranqueVF_M->Timing.stepSize0 = 0.0001;
ArranqueVF_M->solverInfoPtr = (&ArranqueVF_M->solverInfo);
ArranqueVF_M->Timing.stepSize = (0.0001);
rtsiSetFixedStepSize(&ArranqueVF_M->solverInfo, 0.0001);
rtsiSetSolverMode(&ArranqueVF_M->solverInfo, SOLVER_MODE_SINGLETASKING);
/* block I/O */
(void) std::memset((static_cast<void *>(&ArranqueVF_B)), 0,
sizeof(B_ArranqueVF_T));
/* states (dwork) */
(void) std::memset(static_cast<void *>(&ArranqueVF_DW), 0,
sizeof(DW_ArranqueVF_T));
/* child S-Function registration */
{
RTWSfcnInfo *sfcnInfo = &ArranqueVF_M->NonInlinedSFcns.sfcnInfo;
ArranqueVF_M->sfcnInfo = (sfcnInfo);
rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(ArranqueVF_M)));
ArranqueVF_M->Sizes.numSampTimes = (1);
rtssSetNumRootSampTimesPtr(sfcnInfo, &ArranqueVF_M->Sizes.numSampTimes);
ArranqueVF_M->NonInlinedSFcns.taskTimePtrs[0] = (&rtmGetTPtr(ArranqueVF_M)[0]);
rtssSetTPtrPtr(sfcnInfo,ArranqueVF_M->NonInlinedSFcns.taskTimePtrs);
rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(ArranqueVF_M));
rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(ArranqueVF_M));
rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(ArranqueVF_M));
rtssSetStepSizePtr(sfcnInfo, &ArranqueVF_M->Timing.stepSize);
rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(ArranqueVF_M));
rtssSetDerivCacheNeedsResetPtr(sfcnInfo, &ArranqueVF_M->derivCacheNeedsReset);
rtssSetZCCacheNeedsResetPtr(sfcnInfo, &ArranqueVF_M->zCCacheNeedsReset);
rtssSetContTimeOutputInconsistentWithStateAtMajorStepPtr(sfcnInfo,
&ArranqueVF_M->CTOutputIncnstWithState);
rtssSetSampleHitsPtr(sfcnInfo, &ArranqueVF_M->Timing.sampleHits);
rtssSetPerTaskSampleHitsPtr(sfcnInfo,
&ArranqueVF_M->Timing.perTaskSampleHits);
rtssSetSimModePtr(sfcnInfo, &ArranqueVF_M->simMode);
rtssSetSolverInfoPtr(sfcnInfo, &ArranqueVF_M->solverInfoPtr);
}
ArranqueVF_M->Sizes.numSFcns = (2);
/* register each child */
{
(void) std::memset(static_cast<void *>
(&ArranqueVF_M->NonInlinedSFcns.childSFunctions[0]), 0,
2*sizeof(SimStruct));
ArranqueVF_M->childSfunctions =
(&ArranqueVF_M->NonInlinedSFcns.childSFunctionPtrs[0]);
ArranqueVF_M->childSfunctions[0] =
(&ArranqueVF_M->NonInlinedSFcns.childSFunctions[0]);
ArranqueVF_M->childSfunctions[1] =
(&ArranqueVF_M->NonInlinedSFcns.childSFunctions[1]);
/* Level2 S-Function Block: ArranqueVF/<Root>/Digital output1 (sg_fpga_do_sf_a2) */
{
SimStruct *rts = ArranqueVF_M->childSfunctions[0];
/* timing info */
time_T *sfcnPeriod = ArranqueVF_M->NonInlinedSFcns.Sfcn0.sfcnPeriod;
time_T *sfcnOffset = ArranqueVF_M->NonInlinedSFcns.Sfcn0.sfcnOffset;
int_T *sfcnTsMap = ArranqueVF_M->NonInlinedSFcns.Sfcn0.sfcnTsMap;
(void) std::memset(static_cast<void*>(sfcnPeriod), 0,
sizeof(time_T)*1);
(void) std::memset(static_cast<void*>(sfcnOffset), 0,
sizeof(time_T)*1);
ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);
{
ssSetBlkInfo2Ptr(rts, &ArranqueVF_M->NonInlinedSFcns.blkInfo2[0]);
}
_ssSetBlkInfo2PortInfo2Ptr(rts,
&ArranqueVF_M->NonInlinedSFcns.inputOutputPortInfo2[0]);
/* Set up the mdlInfo pointer */
ssSetRTWSfcnInfo(rts, ArranqueVF_M->sfcnInfo);
/* Allocate memory of model methods 2 */
{
ssSetModelMethods2(rts, &ArranqueVF_M->NonInlinedSFcns.methods2[0]);
}
/* Allocate memory of model methods 3 */
{
ssSetModelMethods3(rts, &ArranqueVF_M->NonInlinedSFcns.methods3[0]);
}
/* Allocate memory of model methods 4 */
{
ssSetModelMethods4(rts, &ArranqueVF_M->NonInlinedSFcns.methods4[0]);
}
/* Allocate memory for states auxilliary information */
{
ssSetStatesInfo2(rts, &ArranqueVF_M->NonInlinedSFcns.statesInfo2[0]);
ssSetPeriodicStatesInfo(rts,
&ArranqueVF_M->NonInlinedSFcns.periodicStatesInfo[0]);
}
/* inputs */
{
_ssSetNumInputPorts(rts, 3);
ssSetPortInfoForInputs(rts,
&ArranqueVF_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]);
ssSetPortInfoForInputs(rts,
&ArranqueVF_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]);
_ssSetPortInfo2ForInputUnits(rts,
&ArranqueVF_M->NonInlinedSFcns.Sfcn0.inputPortUnits[0]);
ssSetInputPortUnit(rts, 0, 0);
ssSetInputPortUnit(rts, 1, 0);
ssSetInputPortUnit(rts, 2, 0);
_ssSetPortInfo2ForInputCoSimAttribute(rts,
&ArranqueVF_M->NonInlinedSFcns.Sfcn0.inputPortCoSimAttribute[0]);
ssSetInputPortIsContinuousQuantity(rts, 0, 0);
ssSetInputPortIsContinuousQuantity(rts, 1, 0);
ssSetInputPortIsContinuousQuantity(rts, 2, 0);
/* port 0 */
{
ssSetInputPortRequiredContiguous(rts, 0, 1);
ssSetInputPortSignal(rts, 0, (const_cast<real_T*>(&ArranqueVF_RGND)));
_ssSetInputPortNumDimensions(rts, 0, 1);
ssSetInputPortWidthAsInt(rts, 0, 1);
}
/* port 1 */
{
ssSetInputPortRequiredContiguous(rts, 1, 1);
ssSetInputPortSignal(rts, 1, (const_cast<real_T*>(&ArranqueVF_RGND)));
_ssSetInputPortNumDimensions(rts, 1, 1);
ssSetInputPortWidthAsInt(rts, 1, 1);
}
/* port 2 */
{
ssSetInputPortRequiredContiguous(rts, 2, 1);
ssSetInputPortSignal(rts, 2, &ArranqueVF_B.Constant);
_ssSetInputPortNumDimensions(rts, 2, 1);
ssSetInputPortWidthAsInt(rts, 2, 1);
}
}
/* path info */
ssSetModelName(rts, "Digital output1");
ssSetPath(rts, "ArranqueVF/Digital output1");
ssSetRTModel(rts,ArranqueVF_M);
ssSetParentSS(rts, (NULL));
ssSetRootSS(rts, rts);
ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);
/* parameters */
{
mxArray **sfcnParams = (mxArray **)
&ArranqueVF_M->NonInlinedSFcns.Sfcn0.params;
ssSetSFcnParamsCount(rts, 6);
ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
ssSetSFcnParam(rts, 0, (mxArray*)ArranqueVF_cal->Digitaloutput1_P1_Size);
ssSetSFcnParam(rts, 1, (mxArray*)ArranqueVF_cal->Digitaloutput1_P2_Size);
ssSetSFcnParam(rts, 2, (mxArray*)ArranqueVF_cal->Digitaloutput1_P3_Size);
ssSetSFcnParam(rts, 3, (mxArray*)ArranqueVF_cal->Digitaloutput1_P4_Size);
ssSetSFcnParam(rts, 4, (mxArray*)ArranqueVF_cal->Digitaloutput1_P5_Size);
ssSetSFcnParam(rts, 5, (mxArray*)ArranqueVF_cal->Digitaloutput1_P6_Size);
}
/* work vectors */
ssSetIWork(rts, (int_T *) &ArranqueVF_DW.Digitaloutput1_IWORK);
ssSetPWork(rts, (void **) &ArranqueVF_DW.Digitaloutput1_PWORK[0]);
{
struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
&ArranqueVF_M->NonInlinedSFcns.Sfcn0.dWork;
struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
&ArranqueVF_M->NonInlinedSFcns.Sfcn0.dWorkAux;
ssSetSFcnDWork(rts, dWorkRecord);
ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
ssSetNumDWorkAsInt(rts, 2);
/* IWORK */
ssSetDWorkWidthAsInt(rts, 0, 1);
ssSetDWorkDataType(rts, 0,SS_INTEGER);
ssSetDWorkComplexSignal(rts, 0, 0);
ssSetDWork(rts, 0, &ArranqueVF_DW.Digitaloutput1_IWORK);
/* PWORK */
ssSetDWorkWidthAsInt(rts, 1, 2);
ssSetDWorkDataType(rts, 1,SS_POINTER);
ssSetDWorkComplexSignal(rts, 1, 0);
ssSetDWork(rts, 1, &ArranqueVF_DW.Digitaloutput1_PWORK[0]);
}
/* registration */
sg_fpga_do_sf_a2(rts);
sfcnInitializeSizes(rts);
sfcnInitializeSampleTimes(rts);
/* adjust sample time */
ssSetSampleTime(rts, 0, 0.0001);
ssSetOffsetTime(rts, 0, 0.0);
sfcnTsMap[0] = 0;
/* set compiled values of dynamic vector attributes */
ssSetNumNonsampledZCsAsInt(rts, 0);
/* Update connectivity flags for each port */
_ssSetInputPortConnected(rts, 0, 0);
_ssSetInputPortConnected(rts, 1, 0);
_ssSetInputPortConnected(rts, 2, 1);
/* Update the BufferDstPort flags for each input port */
ssSetInputPortBufferDstPort(rts, 0, -1);
ssSetInputPortBufferDstPort(rts, 1, -1);
ssSetInputPortBufferDstPort(rts, 2, -1);
}
/* Level2 S-Function Block: ArranqueVF/<Root>/Digital output (sg_fpga_do_sf_a2) */
{
SimStruct *rts = ArranqueVF_M->childSfunctions[1];
/* timing info */
time_T *sfcnPeriod = ArranqueVF_M->NonInlinedSFcns.Sfcn1.sfcnPeriod;
time_T *sfcnOffset = ArranqueVF_M->NonInlinedSFcns.Sfcn1.sfcnOffset;
int_T *sfcnTsMap = ArranqueVF_M->NonInlinedSFcns.Sfcn1.sfcnTsMap;
(void) std::memset(static_cast<void*>(sfcnPeriod), 0,
sizeof(time_T)*1);
(void) std::memset(static_cast<void*>(sfcnOffset), 0,
sizeof(time_T)*1);
ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);
{
ssSetBlkInfo2Ptr(rts, &ArranqueVF_M->NonInlinedSFcns.blkInfo2[1]);
}
_ssSetBlkInfo2PortInfo2Ptr(rts,
&ArranqueVF_M->NonInlinedSFcns.inputOutputPortInfo2[1]);
/* Set up the mdlInfo pointer */
ssSetRTWSfcnInfo(rts, ArranqueVF_M->sfcnInfo);
/* Allocate memory of model methods 2 */
{
ssSetModelMethods2(rts, &ArranqueVF_M->NonInlinedSFcns.methods2[1]);
}
/* Allocate memory of model methods 3 */
{
ssSetModelMethods3(rts, &ArranqueVF_M->NonInlinedSFcns.methods3[1]);
}
/* Allocate memory of model methods 4 */
{
ssSetModelMethods4(rts, &ArranqueVF_M->NonInlinedSFcns.methods4[1]);
}
/* Allocate memory for states auxilliary information */
{
ssSetStatesInfo2(rts, &ArranqueVF_M->NonInlinedSFcns.statesInfo2[1]);
ssSetPeriodicStatesInfo(rts,
&ArranqueVF_M->NonInlinedSFcns.periodicStatesInfo[1]);
}
/* inputs */
{
_ssSetNumInputPorts(rts, 3);
ssSetPortInfoForInputs(rts,
&ArranqueVF_M->NonInlinedSFcns.Sfcn1.inputPortInfo[0]);
ssSetPortInfoForInputs(rts,
&ArranqueVF_M->NonInlinedSFcns.Sfcn1.inputPortInfo[0]);
_ssSetPortInfo2ForInputUnits(rts,
&ArranqueVF_M->NonInlinedSFcns.Sfcn1.inputPortUnits[0]);
ssSetInputPortUnit(rts, 0, 0);
ssSetInputPortUnit(rts, 1, 0);
ssSetInputPortUnit(rts, 2, 0);
_ssSetPortInfo2ForInputCoSimAttribute(rts,
&ArranqueVF_M->NonInlinedSFcns.Sfcn1.inputPortCoSimAttribute[0]);
ssSetInputPortIsContinuousQuantity(rts, 0, 0);
ssSetInputPortIsContinuousQuantity(rts, 1, 0);
ssSetInputPortIsContinuousQuantity(rts, 2, 0);
/* port 0 */
{
ssSetInputPortRequiredContiguous(rts, 0, 1);
ssSetInputPortSignal(rts, 0, (const_cast<real_T*>(&ArranqueVF_RGND)));
_ssSetInputPortNumDimensions(rts, 0, 1);
ssSetInputPortWidthAsInt(rts, 0, 1);
}
/* port 1 */
{
ssSetInputPortRequiredContiguous(rts, 1, 1);
ssSetInputPortSignal(rts, 1, (const_cast<real_T*>(&ArranqueVF_RGND)));
_ssSetInputPortNumDimensions(rts, 1, 1);
ssSetInputPortWidthAsInt(rts, 1, 1);
}
/* port 2 */
{
ssSetInputPortRequiredContiguous(rts, 2, 1);
ssSetInputPortSignal(rts, 2, (const_cast<real_T*>(&ArranqueVF_RGND)));
_ssSetInputPortNumDimensions(rts, 2, 1);
ssSetInputPortWidthAsInt(rts, 2, 1);
}
}
/* path info */
ssSetModelName(rts, "Digital output");
ssSetPath(rts, "ArranqueVF/Digital output");
ssSetRTModel(rts,ArranqueVF_M);
ssSetParentSS(rts, (NULL));
ssSetRootSS(rts, rts);
ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);
/* parameters */
{
mxArray **sfcnParams = (mxArray **)
&ArranqueVF_M->NonInlinedSFcns.Sfcn1.params;
ssSetSFcnParamsCount(rts, 6);
ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
ssSetSFcnParam(rts, 0, (mxArray*)ArranqueVF_cal->Digitaloutput_P1_Size);
ssSetSFcnParam(rts, 1, (mxArray*)ArranqueVF_cal->Digitaloutput_P2_Size);
ssSetSFcnParam(rts, 2, (mxArray*)ArranqueVF_cal->Digitaloutput_P3_Size);
ssSetSFcnParam(rts, 3, (mxArray*)ArranqueVF_cal->Digitaloutput_P4_Size);
ssSetSFcnParam(rts, 4, (mxArray*)ArranqueVF_cal->Digitaloutput_P5_Size);
ssSetSFcnParam(rts, 5, (mxArray*)ArranqueVF_cal->Digitaloutput_P6_Size);
}
/* work vectors */
ssSetIWork(rts, (int_T *) &ArranqueVF_DW.Digitaloutput_IWORK);
ssSetPWork(rts, (void **) &ArranqueVF_DW.Digitaloutput_PWORK[0]);
{
struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
&ArranqueVF_M->NonInlinedSFcns.Sfcn1.dWork;
struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
&ArranqueVF_M->NonInlinedSFcns.Sfcn1.dWorkAux;
ssSetSFcnDWork(rts, dWorkRecord);
ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
ssSetNumDWorkAsInt(rts, 2);
/* IWORK */
ssSetDWorkWidthAsInt(rts, 0, 1);
ssSetDWorkDataType(rts, 0,SS_INTEGER);
ssSetDWorkComplexSignal(rts, 0, 0);
ssSetDWork(rts, 0, &ArranqueVF_DW.Digitaloutput_IWORK);
/* PWORK */
ssSetDWorkWidthAsInt(rts, 1, 2);
ssSetDWorkDataType(rts, 1,SS_POINTER);
ssSetDWorkComplexSignal(rts, 1, 0);
ssSetDWork(rts, 1, &ArranqueVF_DW.Digitaloutput_PWORK[0]);
}
/* registration */
sg_fpga_do_sf_a2(rts);
sfcnInitializeSizes(rts);
sfcnInitializeSampleTimes(rts);
/* adjust sample time */
ssSetSampleTime(rts, 0, 0.0001);
ssSetOffsetTime(rts, 0, 0.0);
sfcnTsMap[0] = 0;
/* set compiled values of dynamic vector attributes */
ssSetNumNonsampledZCsAsInt(rts, 0);
/* Update connectivity flags for each port */
_ssSetInputPortConnected(rts, 0, 0);
_ssSetInputPortConnected(rts, 1, 0);
_ssSetInputPortConnected(rts, 2, 0);
/* Update the BufferDstPort flags for each input port */
ssSetInputPortBufferDstPort(rts, 0, -1);
ssSetInputPortBufferDstPort(rts, 1, -1);
ssSetInputPortBufferDstPort(rts, 2, -1);
}
}
/* Start for Constant: '<Root>/Constant' */
ArranqueVF_B.Constant = ArranqueVF_cal->Constant_Value;
/* Start for S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output1' */
/* Level2 S-Function Block: '<Root>/Digital output1' (sg_fpga_do_sf_a2) */
{
SimStruct *rts = ArranqueVF_M->childSfunctions[0];
sfcnStart(rts);
if (ssGetErrorStatus(rts) != (NULL))
return;
}
/* Start for S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output' */
/* Level2 S-Function Block: '<Root>/Digital output' (sg_fpga_do_sf_a2) */
{
SimStruct *rts = ArranqueVF_M->childSfunctions[1];
sfcnStart(rts);
if (ssGetErrorStatus(rts) != (NULL))
return;
}
}
/* Model terminate function */
void ArranqueVF_terminate(void)
{
/* Terminate for S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output1' */
/* Level2 S-Function Block: '<Root>/Digital output1' (sg_fpga_do_sf_a2) */
{
SimStruct *rts = ArranqueVF_M->childSfunctions[0];
sfcnTerminate(rts);
}
/* Terminate for S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output' */
/* Level2 S-Function Block: '<Root>/Digital output' (sg_fpga_do_sf_a2) */
{
SimStruct *rts = ArranqueVF_M->childSfunctions[1];
sfcnTerminate(rts);
}
/* user code (Terminate function Trailer) */
{
freeFPGAModuleSgLib((uint32_t)1);
}
}