control/Control Vectorial/real/Alinear_encoder_sg_rtw/Alinear_encoder.h
2025-09-03 11:21:53 +02:00

382 lines
11 KiB
C

/*
* Alinear_encoder.h
*
* Academic License - for use in teaching, academic research, and meeting
* course requirements at degree granting institutions only. Not for
* government, commercial, or other organizational use.
*
* Code generation for model "Alinear_encoder".
*
* Model version : 1.3
* Simulink Coder version : 24.2 (R2024b) 21-Jun-2024
* C++ source code generated on : Fri Aug 22 11:49:38 2025
*
* Target selection: speedgoat.tlc
* Note: GRT includes extra infrastructure and instrumentation for prototyping
* Embedded hardware selection: Intel->x86-64 (Linux 64)
* Code generation objectives: Unspecified
* Validation result: Not run
*/
#ifndef Alinear_encoder_h_
#define Alinear_encoder_h_
#include "rtwtypes.h"
#include "simstruc.h"
#include "fixedpoint.h"
#include "sg_fpga_io30x_setup_util.h"
#include "sg_fpga_io31x_io32x_setup_util.h"
#include "sg_fpga_io33x_setup_util.h"
#include "sg_fpga_io36x_setup_util.h"
#include "sg_fpga_io39x_setup_util.h"
#include "sg_fpga_io3xx_scatter_gather_dma.h"
#include "sg_fpga_nigora_setup_util.h"
#include "sg_common.h"
#include "sg_printf.h"
#include "Alinear_encoder_types.h"
#include <stddef.h>
#include "rt_zcfcn.h"
#include <cstring>
#include "Alinear_encoder_cal.h"
extern "C"
{
#include "rt_nonfinite.h"
}
#include "zero_crossing_types.h"
/* Macros for accessing real-time model data structure */
#ifndef rtmGetContTimeOutputInconsistentWithStateAtMajorStepFlag
#define rtmGetContTimeOutputInconsistentWithStateAtMajorStepFlag(rtm) ((rtm)->CTOutputIncnstWithState)
#endif
#ifndef rtmSetContTimeOutputInconsistentWithStateAtMajorStepFlag
#define rtmSetContTimeOutputInconsistentWithStateAtMajorStepFlag(rtm, val) ((rtm)->CTOutputIncnstWithState = (val))
#endif
#ifndef rtmGetDerivCacheNeedsReset
#define rtmGetDerivCacheNeedsReset(rtm) ((rtm)->derivCacheNeedsReset)
#endif
#ifndef rtmSetDerivCacheNeedsReset
#define rtmSetDerivCacheNeedsReset(rtm, val) ((rtm)->derivCacheNeedsReset = (val))
#endif
#ifndef rtmGetFinalTime
#define rtmGetFinalTime(rtm) ((rtm)->Timing.tFinal)
#endif
#ifndef rtmGetSampleHitArray
#define rtmGetSampleHitArray(rtm) ((rtm)->Timing.sampleHitArray)
#endif
#ifndef rtmGetStepSize
#define rtmGetStepSize(rtm) ((rtm)->Timing.stepSize)
#endif
#ifndef rtmGetZCCacheNeedsReset
#define rtmGetZCCacheNeedsReset(rtm) ((rtm)->zCCacheNeedsReset)
#endif
#ifndef rtmSetZCCacheNeedsReset
#define rtmSetZCCacheNeedsReset(rtm, val) ((rtm)->zCCacheNeedsReset = (val))
#endif
#ifndef rtmGet_TimeOfLastOutput
#define rtmGet_TimeOfLastOutput(rtm) ((rtm)->Timing.timeOfLastOutput)
#endif
#ifndef rtmGetErrorStatus
#define rtmGetErrorStatus(rtm) ((rtm)->errorStatus)
#endif
#ifndef rtmSetErrorStatus
#define rtmSetErrorStatus(rtm, val) ((rtm)->errorStatus = (val))
#endif
#ifndef rtmGetStopRequested
#define rtmGetStopRequested(rtm) ((rtm)->Timing.stopRequestedFlag)
#endif
#ifndef rtmSetStopRequested
#define rtmSetStopRequested(rtm, val) ((rtm)->Timing.stopRequestedFlag = (val))
#endif
#ifndef rtmGetStopRequestedPtr
#define rtmGetStopRequestedPtr(rtm) (&((rtm)->Timing.stopRequestedFlag))
#endif
#ifndef rtmGetT
#define rtmGetT(rtm) (rtmGetTPtr((rtm))[0])
#endif
#ifndef rtmGetTFinal
#define rtmGetTFinal(rtm) ((rtm)->Timing.tFinal)
#endif
#ifndef rtmGetTPtr
#define rtmGetTPtr(rtm) ((rtm)->Timing.t)
#endif
#ifndef rtmGetTStart
#define rtmGetTStart(rtm) ((rtm)->Timing.tStart)
#endif
#ifndef rtmGetTimeOfLastOutput
#define rtmGetTimeOfLastOutput(rtm) ((rtm)->Timing.timeOfLastOutput)
#endif
/* Block signals (default storage) */
struct B_Alinear_encoder_T {
real_T Constant1; /* '<Root>/Constant1' */
real_T Encoder1_o1; /* '<Root>/Encoder1' */
real_T Encoder1_o2; /* '<Root>/Encoder1' */
real_T Encoder1_o3; /* '<Root>/Encoder1' */
real_T MultiportSwitch[2]; /* '<S4>/Multiport Switch' */
real_T DataTypeConversion; /* '<S1>/Data Type Conversion' */
real_T Delay1; /* '<S1>/Delay1' */
real_T Switch2; /* '<S1>/Switch2' */
real_T CTEEncoder; /* '<S1>/CTE Encoder' */
real_T Sum2; /* '<S1>/Sum2' */
real_T Delay2; /* '<S1>/Delay2' */
real_T Clock; /* '<S5>/Clock' */
real_T Sum; /* '<S5>/Sum' */
real_T Sum1; /* '<S1>/Sum1' */
real_T GainVelocidad; /* '<S1>/Gain Velocidad' */
real_T In; /* '<S2>/In' */
real_T Switch; /* '<S1>/Switch' */
real_T Sum_l; /* '<S1>/Sum' */
real_T Gain1; /* '<S1>/Gain1' */
real_T In1; /* '<S8>/In1' */
boolean_T DataTypeConversion2; /* '<S4>/Data Type Conversion2' */
boolean_T Memory; /* '<S4>/Memory' */
boolean_T LogicalOperator1; /* '<S4>/Logical Operator1' */
boolean_T RelationalOperator; /* '<S5>/Relational Operator' */
boolean_T LogicalOperator; /* '<S1>/Logical Operator' */
boolean_T RelationalOperator1; /* '<S7>/Relational Operator1' */
boolean_T RelationalOperator1_d; /* '<S6>/Relational Operator1' */
};
/* Block states (default storage) for system '<Root>' */
struct DW_Alinear_encoder_T {
real_T Delay1_DSTATE; /* '<S1>/Delay1' */
real_T Delay2_DSTATE[200]; /* '<S1>/Delay2' */
void *Encoder1_PWORK[2]; /* '<Root>/Encoder1' */
struct {
void *LoggedData[2];
} Scope_PWORK; /* '<Root>/Scope' */
struct {
void *USERIO_P_IND;
void *PROG_SPACE_P_IND;
void *CONFIG_REGISTER_P_IND;
void *CONDITIONING_MODULE_IO3xx_2x_P_IND;
void *DEVICENAME_P_IND;
void *DMA_CONTROLLER_P_IND;
} Setup_PWORK; /* '<Root>/Setup' */
struct {
int_T MODULEARCHITECTURE_I_IND;
} Setup_IWORK; /* '<Root>/Setup' */
int8_T SampleandHold_SubsysRanBC; /* '<Root>/Sample and Hold' */
int8_T POSITIVEEdge_SubsysRanBC; /* '<S4>/POSITIVE Edge' */
int8_T NEGATIVEEdge_SubsysRanBC; /* '<S4>/NEGATIVE Edge' */
int8_T TriggeredSubsystem_SubsysRanBC;/* '<S5>/Triggered Subsystem' */
boolean_T Memory_PreviousInput; /* '<S4>/Memory' */
boolean_T POSITIVEEdge_MODE; /* '<S4>/POSITIVE Edge' */
boolean_T NEGATIVEEdge_MODE; /* '<S4>/NEGATIVE Edge' */
};
/* Zero-crossing (trigger) state */
struct PrevZCX_Alinear_encoder_T {
ZCSigState SampleandHold_Trig_ZCE; /* '<Root>/Sample and Hold' */
ZCSigState TriggeredSubsystem_Trig_ZCE;/* '<S5>/Triggered Subsystem' */
};
/* Real-time Model Data Structure */
struct tag_RTM_Alinear_encoder_T {
struct SimStruct_tag * *childSfunctions;
const char_T *errorStatus;
SS_SimMode simMode;
RTWSolverInfo solverInfo;
RTWSolverInfo *solverInfoPtr;
void *sfcnInfo;
/*
* NonInlinedSFcns:
* The following substructure contains information regarding
* non-inlined s-functions used in the model.
*/
struct {
RTWSfcnInfo sfcnInfo;
time_T *taskTimePtrs[2];
SimStruct childSFunctions[1];
SimStruct *childSFunctionPtrs[1];
struct _ssBlkInfo2 blkInfo2[1];
struct _ssSFcnModelMethods2 methods2[1];
struct _ssSFcnModelMethods3 methods3[1];
struct _ssSFcnModelMethods4 methods4[1];
struct _ssStatesInfo2 statesInfo2[1];
ssPeriodicStatesInfo periodicStatesInfo[1];
struct _ssPortInfo2 inputOutputPortInfo2[1];
struct {
time_T sfcnPeriod[1];
time_T sfcnOffset[1];
int_T sfcnTsMap[1];
struct _ssPortOutputs outputPortInfo[3];
struct _ssOutPortUnit outputPortUnits[3];
struct _ssOutPortCoSimAttribute outputPortCoSimAttribute[3];
uint_T attribs[4];
mxArray *params[4];
struct _ssDWorkRecord dWork[1];
struct _ssDWorkAuxRecord dWorkAux[1];
} Sfcn0;
} NonInlinedSFcns;
boolean_T zCCacheNeedsReset;
boolean_T derivCacheNeedsReset;
boolean_T CTOutputIncnstWithState;
/*
* Sizes:
* The following substructure contains sizes information
* for many of the model attributes such as inputs, outputs,
* dwork, sample times, etc.
*/
struct {
uint32_T options;
int_T numContStates;
int_T numU;
int_T numY;
int_T numSampTimes;
int_T numBlocks;
int_T numBlockIO;
int_T numBlockPrms;
int_T numDwork;
int_T numSFcnPrms;
int_T numSFcns;
int_T numIports;
int_T numOports;
int_T numNonSampZCs;
int_T sysDirFeedThru;
int_T rtwGenSfcn;
} Sizes;
/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
time_T stepSize;
uint32_T clockTick0;
uint32_T clockTickH0;
time_T stepSize0;
uint32_T clockTick1;
uint32_T clockTickH1;
time_T stepSize1;
time_T tStart;
time_T tFinal;
time_T timeOfLastOutput;
SimTimeStep simTimeStep;
boolean_T stopRequestedFlag;
time_T *sampleTimes;
time_T *offsetTimes;
int_T *sampleTimeTaskIDPtr;
int_T *sampleHits;
int_T *perTaskSampleHits;
time_T *t;
time_T sampleTimesArray[2];
time_T offsetTimesArray[2];
int_T sampleTimeTaskIDArray[2];
int_T sampleHitArray[2];
int_T perTaskSampleHitsArray[4];
time_T tArray[2];
} Timing;
};
/* Block signals (default storage) */
#ifdef __cplusplus
extern "C"
{
#endif
extern struct B_Alinear_encoder_T Alinear_encoder_B;
#ifdef __cplusplus
}
#endif
/* Block states (default storage) */
extern struct DW_Alinear_encoder_T Alinear_encoder_DW;
/* Zero-crossing (trigger) state */
extern PrevZCX_Alinear_encoder_T Alinear_encoder_PrevZCX;
#ifdef __cplusplus
extern "C"
{
#endif
/* Model entry point functions */
extern void Alinear_encoder_initialize(void);
extern void Alinear_encoder_step(void);
extern void Alinear_encoder_terminate(void);
#ifdef __cplusplus
}
#endif
/* Real-time Model object */
#ifdef __cplusplus
extern "C"
{
#endif
extern RT_MODEL_Alinear_encoder_T *const Alinear_encoder_M;
#ifdef __cplusplus
}
#endif
/*-
* The generated code includes comments that allow you to trace directly
* back to the appropriate location in the model. The basic format
* is <system>/block_name, where system is the system number (uniquely
* assigned by Simulink) and block_name is the name of the block.
*
* Use the MATLAB hilite_system command to trace the generated code back
* to the model. For example,
*
* hilite_system('<S3>') - opens system 3
* hilite_system('<S3>/Kp') - opens and selects block Kp which resides in S3
*
* Here is the system hierarchy for this model
*
* '<Root>' : 'Alinear_encoder'
* '<S1>' : 'Alinear_encoder/Decodificador'
* '<S2>' : 'Alinear_encoder/Sample and Hold'
* '<S3>' : 'Alinear_encoder/Decodificador/Edge Detector'
* '<S4>' : 'Alinear_encoder/Decodificador/Edge Detector/Model'
* '<S5>' : 'Alinear_encoder/Decodificador/Edge Detector/Model/Internal dirac generator'
* '<S6>' : 'Alinear_encoder/Decodificador/Edge Detector/Model/NEGATIVE Edge'
* '<S7>' : 'Alinear_encoder/Decodificador/Edge Detector/Model/POSITIVE Edge'
* '<S8>' : 'Alinear_encoder/Decodificador/Edge Detector/Model/Internal dirac generator/Triggered Subsystem'
*/
#endif /* Alinear_encoder_h_ */