642 lines
24 KiB
C++
642 lines
24 KiB
C++
/*
|
|
* SquareDebug.cpp
|
|
*
|
|
* Academic License - for use in teaching, academic research, and meeting
|
|
* course requirements at degree granting institutions only. Not for
|
|
* government, commercial, or other organizational use.
|
|
*
|
|
* Code generation for model "SquareDebug".
|
|
*
|
|
* Model version : 1.1
|
|
* Simulink Coder version : 24.1 (R2024a) 19-Nov-2023
|
|
* C++ source code generated on : Thu Oct 10 10:54:01 2024
|
|
*
|
|
* Target selection: speedgoat.tlc
|
|
* Note: GRT includes extra infrastructure and instrumentation for prototyping
|
|
* Embedded hardware selection: Intel->x86-64 (Linux 64)
|
|
* Code generation objectives: Unspecified
|
|
* Validation result: Not run
|
|
*/
|
|
|
|
#include "SquareDebug.h"
|
|
#include "SquareDebug_cal.h"
|
|
#include "rtwtypes.h"
|
|
#include "SquareDebug_private.h"
|
|
#include <cstring>
|
|
|
|
extern "C"
|
|
{
|
|
|
|
#include "rt_nonfinite.h"
|
|
|
|
}
|
|
|
|
/* Block signals (default storage) */
|
|
B_SquareDebug_T SquareDebug_B;
|
|
|
|
/* Block states (default storage) */
|
|
DW_SquareDebug_T SquareDebug_DW;
|
|
|
|
/* Real-time model */
|
|
RT_MODEL_SquareDebug_T SquareDebug_M_ = RT_MODEL_SquareDebug_T();
|
|
RT_MODEL_SquareDebug_T *const SquareDebug_M = &SquareDebug_M_;
|
|
|
|
/* Model step function for TID0 */
|
|
void SquareDebug_step0(void) /* Sample time: [0.0001s, 0.0s] */
|
|
{
|
|
/* Update the flag to indicate when data transfers from
|
|
* Sample time: [0.0001s, 0.0s] to Sample time: [1.0s, 0.0s] */
|
|
SquareDebug_M->Timing.perTaskSampleHits[2] =
|
|
(SquareDebug_M->Timing.RateInteraction.TID0_2 == 0);
|
|
(SquareDebug_M->Timing.RateInteraction.TID0_2)++;
|
|
if ((SquareDebug_M->Timing.RateInteraction.TID0_2) > 9999) {
|
|
SquareDebug_M->Timing.RateInteraction.TID0_2 = 0;
|
|
}
|
|
|
|
/* Update the flag to indicate when data transfers from
|
|
* Sample time: [0.0001s, 0.0s] to Sample time: [2.5s, 0.0s] */
|
|
SquareDebug_M->Timing.perTaskSampleHits[3] =
|
|
(SquareDebug_M->Timing.RateInteraction.TID0_3 == 0);
|
|
(SquareDebug_M->Timing.RateInteraction.TID0_3)++;
|
|
if ((SquareDebug_M->Timing.RateInteraction.TID0_3) > 24999) {
|
|
SquareDebug_M->Timing.RateInteraction.TID0_3 = 0;
|
|
}
|
|
|
|
/* RateTransition generated from: '<Root>/Digital output' */
|
|
if (SquareDebug_M->Timing.RateInteraction.TID0_3 == 1) {
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Rd = static_cast<int8_T>
|
|
(SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Rd == 0);
|
|
}
|
|
|
|
/* RateTransition generated from: '<Root>/Digital output' */
|
|
SquareDebug_B.TmpRTBAtDigitaloutputInport1 =
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Bu[SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Rd];
|
|
|
|
/* RateTransition generated from: '<Root>/Digital output' */
|
|
if (SquareDebug_M->Timing.RateInteraction.TID0_2 == 1) {
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Rd = static_cast<int8_T>
|
|
(SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Rd == 0);
|
|
}
|
|
|
|
/* RateTransition generated from: '<Root>/Digital output' */
|
|
SquareDebug_B.TmpRTBAtDigitaloutputInport2 =
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Bu[SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Rd];
|
|
|
|
/* S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output' */
|
|
|
|
/* Level2 S-Function Block: '<Root>/Digital output' (sg_fpga_do_sf_a2) */
|
|
{
|
|
SimStruct *rts = SquareDebug_M->childSfunctions[0];
|
|
sfcnOutputs(rts,0);
|
|
}
|
|
|
|
/* user code (Output function Trailer for TID0) */
|
|
{
|
|
if (0) {
|
|
io3xx_sgdma_feedSequential(1);
|
|
}
|
|
}
|
|
|
|
/* Update absolute time */
|
|
/* The "clockTick0" counts the number of times the code of this task has
|
|
* been executed. The absolute time is the multiplication of "clockTick0"
|
|
* and "Timing.stepSize0". Size of "clockTick0" ensures timer will not
|
|
* overflow during the application lifespan selected.
|
|
* Timer of this task consists of two 32 bit unsigned integers.
|
|
* The two integers represent the low bits Timing.clockTick0 and the high bits
|
|
* Timing.clockTickH0. When the low bit overflows to 0, the high bits increment.
|
|
*/
|
|
if (!(++SquareDebug_M->Timing.clockTick0)) {
|
|
++SquareDebug_M->Timing.clockTickH0;
|
|
}
|
|
|
|
SquareDebug_M->Timing.t[0] = SquareDebug_M->Timing.clockTick0 *
|
|
SquareDebug_M->Timing.stepSize0 + SquareDebug_M->Timing.clockTickH0 *
|
|
SquareDebug_M->Timing.stepSize0 * 4294967296.0;
|
|
}
|
|
|
|
/* Model step function for TID1 */
|
|
void SquareDebug_step1(void) /* Sample time: [0.5s, 0.0s] */
|
|
{
|
|
/* Update the flag to indicate when data transfers from
|
|
* Sample time: [0.5s, 0.0s] to Sample time: [1.0s, 0.0s] */
|
|
SquareDebug_M->Timing.perTaskSampleHits[6] =
|
|
(SquareDebug_M->Timing.RateInteraction.TID1_2 == 0);
|
|
(SquareDebug_M->Timing.RateInteraction.TID1_2)++;
|
|
if ((SquareDebug_M->Timing.RateInteraction.TID1_2) > 1) {
|
|
SquareDebug_M->Timing.RateInteraction.TID1_2 = 0;
|
|
}
|
|
|
|
/* Update the flag to indicate when data transfers from
|
|
* Sample time: [0.5s, 0.0s] to Sample time: [2.5s, 0.0s] */
|
|
SquareDebug_M->Timing.perTaskSampleHits[7] =
|
|
(SquareDebug_M->Timing.RateInteraction.TID1_3 == 0);
|
|
(SquareDebug_M->Timing.RateInteraction.TID1_3)++;
|
|
if ((SquareDebug_M->Timing.RateInteraction.TID1_3) > 4) {
|
|
SquareDebug_M->Timing.RateInteraction.TID1_3 = 0;
|
|
}
|
|
|
|
/* RateTransition generated from: '<Root>/Scope' */
|
|
if (SquareDebug_M->Timing.RateInteraction.TID1_3 == 1) {
|
|
SquareDebug_DW.TmpRTBAtScopeInport1_RdBufIdx = static_cast<int8_T>
|
|
(SquareDebug_DW.TmpRTBAtScopeInport1_RdBufIdx == 0);
|
|
}
|
|
|
|
/* RateTransition generated from: '<Root>/Scope' */
|
|
SquareDebug_B.TmpRTBAtScopeInport1 =
|
|
SquareDebug_DW.TmpRTBAtScopeInport1_Buf[SquareDebug_DW.TmpRTBAtScopeInport1_RdBufIdx];
|
|
|
|
/* RateTransition generated from: '<Root>/Scope' */
|
|
if (SquareDebug_M->Timing.RateInteraction.TID1_2 == 1) {
|
|
SquareDebug_DW.TmpRTBAtScopeInport2_RdBufIdx = static_cast<int8_T>
|
|
(SquareDebug_DW.TmpRTBAtScopeInport2_RdBufIdx == 0);
|
|
}
|
|
|
|
/* RateTransition generated from: '<Root>/Scope' */
|
|
SquareDebug_B.TmpRTBAtScopeInport2 =
|
|
SquareDebug_DW.TmpRTBAtScopeInport2_Buf[SquareDebug_DW.TmpRTBAtScopeInport2_RdBufIdx];
|
|
|
|
/* Update absolute time */
|
|
/* The "clockTick1" counts the number of times the code of this task has
|
|
* been executed. The resolution of this integer timer is 0.5, which is the step size
|
|
* of the task. Size of "clockTick1" ensures timer will not overflow during the
|
|
* application lifespan selected.
|
|
* Timer of this task consists of two 32 bit unsigned integers.
|
|
* The two integers represent the low bits Timing.clockTick1 and the high bits
|
|
* Timing.clockTickH1. When the low bit overflows to 0, the high bits increment.
|
|
*/
|
|
SquareDebug_M->Timing.clockTick1++;
|
|
if (!SquareDebug_M->Timing.clockTick1) {
|
|
SquareDebug_M->Timing.clockTickH1++;
|
|
}
|
|
}
|
|
|
|
/* Model step function for TID2 */
|
|
void SquareDebug_step2(void) /* Sample time: [1.0s, 0.0s] */
|
|
{
|
|
/* DiscretePulseGenerator: '<Root>/Pulse Generator1' */
|
|
SquareDebug_B.PulseGenerator1 = (SquareDebug_DW.clockTickCounter <
|
|
SquareDebug_cal->PulseGenerator1_Duty) && (SquareDebug_DW.clockTickCounter >=
|
|
0) ? SquareDebug_cal->PulseGenerator1_Amp : 0.0;
|
|
|
|
/* DiscretePulseGenerator: '<Root>/Pulse Generator1' */
|
|
if (SquareDebug_DW.clockTickCounter >= SquareDebug_cal->PulseGenerator1_Period
|
|
- 1.0) {
|
|
SquareDebug_DW.clockTickCounter = 0;
|
|
} else {
|
|
SquareDebug_DW.clockTickCounter++;
|
|
}
|
|
|
|
/* RateTransition generated from: '<Root>/Digital output' */
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Wr = static_cast<int8_T>
|
|
(SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Wr == 0);
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Bu[SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Wr]
|
|
= SquareDebug_B.PulseGenerator1;
|
|
|
|
/* RateTransition generated from: '<Root>/Scope' */
|
|
SquareDebug_DW.TmpRTBAtScopeInport2_WrBufIdx = static_cast<int8_T>
|
|
(SquareDebug_DW.TmpRTBAtScopeInport2_WrBufIdx == 0);
|
|
SquareDebug_DW.TmpRTBAtScopeInport2_Buf[SquareDebug_DW.TmpRTBAtScopeInport2_WrBufIdx]
|
|
= SquareDebug_B.PulseGenerator1;
|
|
|
|
/* Update absolute time */
|
|
/* The "clockTick2" counts the number of times the code of this task has
|
|
* been executed. The resolution of this integer timer is 1.0, which is the step size
|
|
* of the task. Size of "clockTick2" ensures timer will not overflow during the
|
|
* application lifespan selected.
|
|
* Timer of this task consists of two 32 bit unsigned integers.
|
|
* The two integers represent the low bits Timing.clockTick2 and the high bits
|
|
* Timing.clockTickH2. When the low bit overflows to 0, the high bits increment.
|
|
*/
|
|
SquareDebug_M->Timing.clockTick2++;
|
|
if (!SquareDebug_M->Timing.clockTick2) {
|
|
SquareDebug_M->Timing.clockTickH2++;
|
|
}
|
|
}
|
|
|
|
/* Model step function for TID3 */
|
|
void SquareDebug_step3(void) /* Sample time: [2.5s, 0.0s] */
|
|
{
|
|
/* DiscretePulseGenerator: '<Root>/Pulse Generator' */
|
|
SquareDebug_B.PulseGenerator = (SquareDebug_DW.clockTickCounter_p <
|
|
SquareDebug_cal->PulseGenerator_Duty) && (SquareDebug_DW.clockTickCounter_p >=
|
|
0) ? SquareDebug_cal->PulseGenerator_Amp : 0.0;
|
|
|
|
/* DiscretePulseGenerator: '<Root>/Pulse Generator' */
|
|
if (SquareDebug_DW.clockTickCounter_p >=
|
|
SquareDebug_cal->PulseGenerator_Period - 1.0) {
|
|
SquareDebug_DW.clockTickCounter_p = 0;
|
|
} else {
|
|
SquareDebug_DW.clockTickCounter_p++;
|
|
}
|
|
|
|
/* RateTransition generated from: '<Root>/Digital output' */
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Wr = static_cast<int8_T>
|
|
(SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Wr == 0);
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Bu[SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Wr]
|
|
= SquareDebug_B.PulseGenerator;
|
|
|
|
/* RateTransition generated from: '<Root>/Scope' */
|
|
SquareDebug_DW.TmpRTBAtScopeInport1_WrBufIdx = static_cast<int8_T>
|
|
(SquareDebug_DW.TmpRTBAtScopeInport1_WrBufIdx == 0);
|
|
SquareDebug_DW.TmpRTBAtScopeInport1_Buf[SquareDebug_DW.TmpRTBAtScopeInport1_WrBufIdx]
|
|
= SquareDebug_B.PulseGenerator;
|
|
|
|
/* Update absolute time */
|
|
/* The "clockTick3" counts the number of times the code of this task has
|
|
* been executed. The resolution of this integer timer is 2.5, which is the step size
|
|
* of the task. Size of "clockTick3" ensures timer will not overflow during the
|
|
* application lifespan selected.
|
|
* Timer of this task consists of two 32 bit unsigned integers.
|
|
* The two integers represent the low bits Timing.clockTick3 and the high bits
|
|
* Timing.clockTickH3. When the low bit overflows to 0, the high bits increment.
|
|
*/
|
|
SquareDebug_M->Timing.clockTick3++;
|
|
if (!SquareDebug_M->Timing.clockTick3) {
|
|
SquareDebug_M->Timing.clockTickH3++;
|
|
}
|
|
}
|
|
|
|
/* Model initialize function */
|
|
void SquareDebug_initialize(void)
|
|
{
|
|
/* Registration code */
|
|
|
|
/* initialize non-finites */
|
|
rt_InitInfAndNaN(sizeof(real_T));
|
|
|
|
/* Set task counter limit used by the static main program */
|
|
(SquareDebug_M)->Timing.TaskCounters.cLimit[0] = 1;
|
|
(SquareDebug_M)->Timing.TaskCounters.cLimit[1] = 5000;
|
|
(SquareDebug_M)->Timing.TaskCounters.cLimit[2] = 10000;
|
|
(SquareDebug_M)->Timing.TaskCounters.cLimit[3] = 25000;
|
|
rtsiSetSolverName(&SquareDebug_M->solverInfo,"FixedStepDiscrete");
|
|
SquareDebug_M->solverInfoPtr = (&SquareDebug_M->solverInfo);
|
|
|
|
/* Initialize timing info */
|
|
{
|
|
int_T *mdlTsMap = SquareDebug_M->Timing.sampleTimeTaskIDArray;
|
|
mdlTsMap[0] = 0;
|
|
mdlTsMap[1] = 1;
|
|
mdlTsMap[2] = 2;
|
|
mdlTsMap[3] = 3;
|
|
|
|
/* polyspace +2 MISRA2012:D4.1 [Justified:Low] "SquareDebug_M points to
|
|
static memory which is guaranteed to be non-NULL" */
|
|
SquareDebug_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
|
|
SquareDebug_M->Timing.sampleTimes = (&SquareDebug_M->
|
|
Timing.sampleTimesArray[0]);
|
|
SquareDebug_M->Timing.offsetTimes = (&SquareDebug_M->
|
|
Timing.offsetTimesArray[0]);
|
|
|
|
/* task periods */
|
|
SquareDebug_M->Timing.sampleTimes[0] = (0.0001);
|
|
SquareDebug_M->Timing.sampleTimes[1] = (0.5);
|
|
SquareDebug_M->Timing.sampleTimes[2] = (1.0);
|
|
SquareDebug_M->Timing.sampleTimes[3] = (2.5);
|
|
|
|
/* task offsets */
|
|
SquareDebug_M->Timing.offsetTimes[0] = (0.0);
|
|
SquareDebug_M->Timing.offsetTimes[1] = (0.0);
|
|
SquareDebug_M->Timing.offsetTimes[2] = (0.0);
|
|
SquareDebug_M->Timing.offsetTimes[3] = (0.0);
|
|
}
|
|
|
|
rtmSetTPtr(SquareDebug_M, &SquareDebug_M->Timing.tArray[0]);
|
|
|
|
{
|
|
int_T *mdlSampleHits = SquareDebug_M->Timing.sampleHitArray;
|
|
int_T *mdlPerTaskSampleHits = SquareDebug_M->Timing.perTaskSampleHitsArray;
|
|
SquareDebug_M->Timing.perTaskSampleHits = (&mdlPerTaskSampleHits[0]);
|
|
mdlSampleHits[0] = 1;
|
|
SquareDebug_M->Timing.sampleHits = (&mdlSampleHits[0]);
|
|
}
|
|
|
|
rtmSetTFinal(SquareDebug_M, -1);
|
|
SquareDebug_M->Timing.stepSize0 = 0.0001;
|
|
SquareDebug_M->solverInfoPtr = (&SquareDebug_M->solverInfo);
|
|
SquareDebug_M->Timing.stepSize = (0.0001);
|
|
rtsiSetFixedStepSize(&SquareDebug_M->solverInfo, 0.0001);
|
|
rtsiSetSolverMode(&SquareDebug_M->solverInfo, SOLVER_MODE_MULTITASKING);
|
|
|
|
/* block I/O */
|
|
(void) std::memset((static_cast<void *>(&SquareDebug_B)), 0,
|
|
sizeof(B_SquareDebug_T));
|
|
|
|
/* states (dwork) */
|
|
(void) std::memset(static_cast<void *>(&SquareDebug_DW), 0,
|
|
sizeof(DW_SquareDebug_T));
|
|
|
|
/* child S-Function registration */
|
|
{
|
|
RTWSfcnInfo *sfcnInfo = &SquareDebug_M->NonInlinedSFcns.sfcnInfo;
|
|
SquareDebug_M->sfcnInfo = (sfcnInfo);
|
|
rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(SquareDebug_M)));
|
|
SquareDebug_M->Sizes.numSampTimes = (4);
|
|
rtssSetNumRootSampTimesPtr(sfcnInfo, &SquareDebug_M->Sizes.numSampTimes);
|
|
SquareDebug_M->NonInlinedSFcns.taskTimePtrs[0] = (&rtmGetTPtr(SquareDebug_M)
|
|
[0]);
|
|
SquareDebug_M->NonInlinedSFcns.taskTimePtrs[1] = (&rtmGetTPtr(SquareDebug_M)
|
|
[1]);
|
|
SquareDebug_M->NonInlinedSFcns.taskTimePtrs[2] = (&rtmGetTPtr(SquareDebug_M)
|
|
[2]);
|
|
SquareDebug_M->NonInlinedSFcns.taskTimePtrs[3] = (&rtmGetTPtr(SquareDebug_M)
|
|
[3]);
|
|
rtssSetTPtrPtr(sfcnInfo,SquareDebug_M->NonInlinedSFcns.taskTimePtrs);
|
|
rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(SquareDebug_M));
|
|
rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(SquareDebug_M));
|
|
rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(SquareDebug_M));
|
|
rtssSetStepSizePtr(sfcnInfo, &SquareDebug_M->Timing.stepSize);
|
|
rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(SquareDebug_M));
|
|
rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
|
|
&SquareDebug_M->derivCacheNeedsReset);
|
|
rtssSetZCCacheNeedsResetPtr(sfcnInfo, &SquareDebug_M->zCCacheNeedsReset);
|
|
rtssSetContTimeOutputInconsistentWithStateAtMajorStepPtr(sfcnInfo,
|
|
&SquareDebug_M->CTOutputIncnstWithState);
|
|
rtssSetSampleHitsPtr(sfcnInfo, &SquareDebug_M->Timing.sampleHits);
|
|
rtssSetPerTaskSampleHitsPtr(sfcnInfo,
|
|
&SquareDebug_M->Timing.perTaskSampleHits);
|
|
rtssSetSimModePtr(sfcnInfo, &SquareDebug_M->simMode);
|
|
rtssSetSolverInfoPtr(sfcnInfo, &SquareDebug_M->solverInfoPtr);
|
|
}
|
|
|
|
SquareDebug_M->Sizes.numSFcns = (1);
|
|
|
|
/* register each child */
|
|
{
|
|
(void) std::memset(static_cast<void *>
|
|
(&SquareDebug_M->NonInlinedSFcns.childSFunctions[0]), 0,
|
|
1*sizeof(SimStruct));
|
|
SquareDebug_M->childSfunctions =
|
|
(&SquareDebug_M->NonInlinedSFcns.childSFunctionPtrs[0]);
|
|
SquareDebug_M->childSfunctions[0] =
|
|
(&SquareDebug_M->NonInlinedSFcns.childSFunctions[0]);
|
|
|
|
/* Level2 S-Function Block: SquareDebug/<Root>/Digital output (sg_fpga_do_sf_a2) */
|
|
{
|
|
SimStruct *rts = SquareDebug_M->childSfunctions[0];
|
|
|
|
/* timing info */
|
|
time_T *sfcnPeriod = SquareDebug_M->NonInlinedSFcns.Sfcn0.sfcnPeriod;
|
|
time_T *sfcnOffset = SquareDebug_M->NonInlinedSFcns.Sfcn0.sfcnOffset;
|
|
int_T *sfcnTsMap = SquareDebug_M->NonInlinedSFcns.Sfcn0.sfcnTsMap;
|
|
(void) std::memset(static_cast<void*>(sfcnPeriod), 0,
|
|
sizeof(time_T)*1);
|
|
(void) std::memset(static_cast<void*>(sfcnOffset), 0,
|
|
sizeof(time_T)*1);
|
|
ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
|
|
ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
|
|
ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);
|
|
|
|
{
|
|
ssSetBlkInfo2Ptr(rts, &SquareDebug_M->NonInlinedSFcns.blkInfo2[0]);
|
|
}
|
|
|
|
_ssSetBlkInfo2PortInfo2Ptr(rts,
|
|
&SquareDebug_M->NonInlinedSFcns.inputOutputPortInfo2[0]);
|
|
|
|
/* Set up the mdlInfo pointer */
|
|
ssSetRTWSfcnInfo(rts, SquareDebug_M->sfcnInfo);
|
|
|
|
/* Allocate memory of model methods 2 */
|
|
{
|
|
ssSetModelMethods2(rts, &SquareDebug_M->NonInlinedSFcns.methods2[0]);
|
|
}
|
|
|
|
/* Allocate memory of model methods 3 */
|
|
{
|
|
ssSetModelMethods3(rts, &SquareDebug_M->NonInlinedSFcns.methods3[0]);
|
|
}
|
|
|
|
/* Allocate memory of model methods 4 */
|
|
{
|
|
ssSetModelMethods4(rts, &SquareDebug_M->NonInlinedSFcns.methods4[0]);
|
|
}
|
|
|
|
/* Allocate memory for states auxilliary information */
|
|
{
|
|
ssSetStatesInfo2(rts, &SquareDebug_M->NonInlinedSFcns.statesInfo2[0]);
|
|
ssSetPeriodicStatesInfo(rts,
|
|
&SquareDebug_M->NonInlinedSFcns.periodicStatesInfo[0]);
|
|
}
|
|
|
|
/* inputs */
|
|
{
|
|
_ssSetNumInputPorts(rts, 2);
|
|
ssSetPortInfoForInputs(rts,
|
|
&SquareDebug_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]);
|
|
ssSetPortInfoForInputs(rts,
|
|
&SquareDebug_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]);
|
|
_ssSetPortInfo2ForInputUnits(rts,
|
|
&SquareDebug_M->NonInlinedSFcns.Sfcn0.inputPortUnits[0]);
|
|
ssSetInputPortUnit(rts, 0, 0);
|
|
ssSetInputPortUnit(rts, 1, 0);
|
|
_ssSetPortInfo2ForInputCoSimAttribute(rts,
|
|
&SquareDebug_M->NonInlinedSFcns.Sfcn0.inputPortCoSimAttribute[0]);
|
|
ssSetInputPortIsContinuousQuantity(rts, 0, 0);
|
|
ssSetInputPortIsContinuousQuantity(rts, 1, 0);
|
|
|
|
/* port 0 */
|
|
{
|
|
ssSetInputPortRequiredContiguous(rts, 0, 1);
|
|
ssSetInputPortSignal(rts, 0,
|
|
&SquareDebug_B.TmpRTBAtDigitaloutputInport1);
|
|
_ssSetInputPortNumDimensions(rts, 0, 1);
|
|
ssSetInputPortWidthAsInt(rts, 0, 1);
|
|
}
|
|
|
|
/* port 1 */
|
|
{
|
|
ssSetInputPortRequiredContiguous(rts, 1, 1);
|
|
ssSetInputPortSignal(rts, 1,
|
|
&SquareDebug_B.TmpRTBAtDigitaloutputInport2);
|
|
_ssSetInputPortNumDimensions(rts, 1, 1);
|
|
ssSetInputPortWidthAsInt(rts, 1, 1);
|
|
}
|
|
}
|
|
|
|
/* path info */
|
|
ssSetModelName(rts, "Digital output");
|
|
ssSetPath(rts, "SquareDebug/Digital output");
|
|
ssSetRTModel(rts,SquareDebug_M);
|
|
ssSetParentSS(rts, (NULL));
|
|
ssSetRootSS(rts, rts);
|
|
ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);
|
|
|
|
/* parameters */
|
|
{
|
|
mxArray **sfcnParams = (mxArray **)
|
|
&SquareDebug_M->NonInlinedSFcns.Sfcn0.params;
|
|
ssSetSFcnParamsCount(rts, 6);
|
|
ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
|
|
ssSetSFcnParam(rts, 0, (mxArray*)SquareDebug_cal->Digitaloutput_P1_Size);
|
|
ssSetSFcnParam(rts, 1, (mxArray*)SquareDebug_cal->Digitaloutput_P2_Size);
|
|
ssSetSFcnParam(rts, 2, (mxArray*)SquareDebug_cal->Digitaloutput_P3_Size);
|
|
ssSetSFcnParam(rts, 3, (mxArray*)SquareDebug_cal->Digitaloutput_P4_Size);
|
|
ssSetSFcnParam(rts, 4, (mxArray*)SquareDebug_cal->Digitaloutput_P5_Size);
|
|
ssSetSFcnParam(rts, 5, (mxArray*)SquareDebug_cal->Digitaloutput_P6_Size);
|
|
}
|
|
|
|
/* work vectors */
|
|
ssSetPWork(rts, (void **) &SquareDebug_DW.Digitaloutput_PWORK[0]);
|
|
|
|
{
|
|
struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
|
|
&SquareDebug_M->NonInlinedSFcns.Sfcn0.dWork;
|
|
struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
|
|
&SquareDebug_M->NonInlinedSFcns.Sfcn0.dWorkAux;
|
|
ssSetSFcnDWork(rts, dWorkRecord);
|
|
ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
|
|
ssSetNumDWorkAsInt(rts, 1);
|
|
|
|
/* PWORK */
|
|
ssSetDWorkWidthAsInt(rts, 0, 2);
|
|
ssSetDWorkDataType(rts, 0,SS_POINTER);
|
|
ssSetDWorkComplexSignal(rts, 0, 0);
|
|
ssSetDWork(rts, 0, &SquareDebug_DW.Digitaloutput_PWORK[0]);
|
|
}
|
|
|
|
/* registration */
|
|
sg_fpga_do_sf_a2(rts);
|
|
sfcnInitializeSizes(rts);
|
|
sfcnInitializeSampleTimes(rts);
|
|
|
|
/* adjust sample time */
|
|
ssSetSampleTime(rts, 0, 0.0001);
|
|
ssSetOffsetTime(rts, 0, 0.0);
|
|
sfcnTsMap[0] = 0;
|
|
|
|
/* set compiled values of dynamic vector attributes */
|
|
ssSetNumNonsampledZCsAsInt(rts, 0);
|
|
|
|
/* Update connectivity flags for each port */
|
|
_ssSetInputPortConnected(rts, 0, 1);
|
|
_ssSetInputPortConnected(rts, 1, 1);
|
|
|
|
/* Update the BufferDstPort flags for each input port */
|
|
ssSetInputPortBufferDstPort(rts, 0, -1);
|
|
ssSetInputPortBufferDstPort(rts, 1, -1);
|
|
}
|
|
}
|
|
|
|
/* Start for S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output' */
|
|
/* Level2 S-Function Block: '<Root>/Digital output' (sg_fpga_do_sf_a2) */
|
|
{
|
|
SimStruct *rts = SquareDebug_M->childSfunctions[0];
|
|
sfcnStart(rts);
|
|
if (ssGetErrorStatus(rts) != (NULL))
|
|
return;
|
|
}
|
|
|
|
/* Start for DiscretePulseGenerator: '<Root>/Pulse Generator1' */
|
|
SquareDebug_DW.clockTickCounter = 0;
|
|
|
|
/* Start for DiscretePulseGenerator: '<Root>/Pulse Generator' */
|
|
SquareDebug_DW.clockTickCounter_p = 0;
|
|
|
|
/* InitializeConditions for RateTransition generated from: '<Root>/Digital output' */
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Bu[0] =
|
|
SquareDebug_cal->TmpRTBAtDigitaloutputInport1_In;
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Wr = 0;
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport1_Rd = 1;
|
|
|
|
/* InitializeConditions for RateTransition generated from: '<Root>/Digital output' */
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Bu[0] =
|
|
SquareDebug_cal->TmpRTBAtDigitaloutputInport2_In;
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Wr = 0;
|
|
SquareDebug_DW.TmpRTBAtDigitaloutputInport2_Rd = 1;
|
|
|
|
/* InitializeConditions for RateTransition generated from: '<Root>/Scope' */
|
|
SquareDebug_DW.TmpRTBAtScopeInport1_Buf[0] =
|
|
SquareDebug_cal->TmpRTBAtScopeInport1_InitialCon;
|
|
SquareDebug_DW.TmpRTBAtScopeInport1_WrBufIdx = 0;
|
|
SquareDebug_DW.TmpRTBAtScopeInport1_RdBufIdx = 1;
|
|
|
|
/* InitializeConditions for RateTransition generated from: '<Root>/Scope' */
|
|
SquareDebug_DW.TmpRTBAtScopeInport2_Buf[0] =
|
|
SquareDebug_cal->TmpRTBAtScopeInport2_InitialCon;
|
|
SquareDebug_DW.TmpRTBAtScopeInport2_WrBufIdx = 0;
|
|
SquareDebug_DW.TmpRTBAtScopeInport2_RdBufIdx = 1;
|
|
}
|
|
|
|
/* Model terminate function */
|
|
void SquareDebug_terminate(void)
|
|
{
|
|
/* Terminate for S-Function (sg_fpga_do_sf_a2): '<Root>/Digital output' */
|
|
/* Level2 S-Function Block: '<Root>/Digital output' (sg_fpga_do_sf_a2) */
|
|
{
|
|
SimStruct *rts = SquareDebug_M->childSfunctions[0];
|
|
sfcnTerminate(rts);
|
|
}
|
|
|
|
/* user code (Terminate function Trailer) */
|
|
{
|
|
uintptr_t bar2Addr;
|
|
volatile io3xx_pull *ptrIO31x_pull;
|
|
volatile io3xx_2x *ptrio3xx_2x;
|
|
uint16_t moduleArchitecture;
|
|
sg_fpga_io3xxModuleIdT moduleId;
|
|
static char msg[500];
|
|
|
|
// Get module IDs (PIC info)
|
|
sg_fpga_IO3xxGetModuleId(39750, &moduleId);
|
|
moduleArchitecture = moduleId.moduleArchitecture;
|
|
SG_PRINTF(DEBUG, "moduleArchitecture %d\n",moduleArchitecture);
|
|
if (moduleArchitecture == TEWS_TXMC) {
|
|
// Get pointer to io31x_pull
|
|
bar2Addr = (uintptr_t)io3xxGetAddressSgLib((int32_t)1, SG_FPGA_IO3XX_BAR2);
|
|
if (bar2Addr == 0) {
|
|
sprintf(msg, "%s", pSgErrorStr);
|
|
rtmSetErrorStatus(SquareDebug_M, msg);
|
|
SG_PRINTF(ERROR,msg);
|
|
return;
|
|
}
|
|
|
|
ptrIO31x_pull = (io3xx_pull *)((uintptr_t)bar2Addr + IO3xx_PULL_BASE);
|
|
|
|
// Disable pull resistors
|
|
ptrIO31x_pull->enable = 0x0; // disable
|
|
}
|
|
|
|
// Pull down and disable DIOs
|
|
if ((1 == 2) || (1 == 3)) {
|
|
bar2Addr = (uintptr_t)io3xxGetAddressSgLib((int32_t)1, SG_FPGA_IO3XX_BAR2);
|
|
if (bar2Addr == 0) {
|
|
sprintf(msg, "%s", pSgErrorStr);
|
|
rtmSetErrorStatus(SquareDebug_M, msg);
|
|
SG_PRINTF(ERROR,msg);
|
|
return;
|
|
}
|
|
|
|
ptrio3xx_2x = (io3xx_2x *)((uintptr_t)bar2Addr +IO3xx_2x_BASE);
|
|
ptrio3xx_2x->pull = 0xffffffff; // pull down
|
|
ptrio3xx_2x->dir = 0x0; // input
|
|
ptrio3xx_2x->update = 0x1;
|
|
sg_wait_s(SG_FPGA_WAIT_TIME_100us);
|
|
ptrio3xx_2x->update = 0x0;
|
|
sg_wait_s(SG_FPGA_WAIT_TIME_1ms);
|
|
|
|
#if DEBUGGING
|
|
|
|
// For debugging output port register of IO-Expander
|
|
sg_wait_s(SG_FPGA_WAIT_TIME_100ms);
|
|
SG_PRINTF(INFO, "last configuration from mdl start\n");
|
|
SG_PRINTF(INFO, "rxData of Expander1: 0x%X\n",
|
|
ptrio3xx_2x->rxDataExpander1);
|
|
SG_PRINTF(INFO, "rxData of Expander2: 0x%X\n",
|
|
ptrio3xx_2x->rxDataExpander2);
|
|
SG_PRINTF(INFO, "rxData of Expander3: 0x%X\n",
|
|
ptrio3xx_2x->rxDataExpander3);
|
|
SG_PRINTF(INFO, "rxData of Expander4: 0x%X\n",
|
|
ptrio3xx_2x->rxDataExpander4);
|
|
|
|
#endif
|
|
|
|
} else if (1 == 4) {
|
|
IO3xx_24_terminate(1);
|
|
}
|
|
|
|
freeFPGAModuleSgLib((uint32_t)1);
|
|
}
|
|
}
|